Содержание

Переделка в зарядное блока питания INWIN POWER MAN IP-S350Q2-0

В продолжение серии статей о переделке компьютерных блоков питания в зарядное, сегодня мы более близко познакомимся с переделкой INWIN POWER MAN IP-S350Q2-0 350 Вт в автомобильное зарядное устройство. Сам алгоритм работ, не особо отличается от блоков на основе ШИМ UC38xx, с которыми мы сталкивались ранее. Но, тут присутствуют свои некоторые нюансы.

Переделка в зарядное блока питания INWIN POWER MAN IP-S350Q2-0


Забегая наперед, можно уточнить, что некоторые модели блоков POWER MAN устроены практически идентично и сам подход может применяться как для 300Вт-ных блоков, так и для моделей в 450Вт. Практически точной копией POWER MAN IP-S350Q2-0 является блок питания Thermaltake 400PP.


INWIN POWER MAN IP-S350Q2-0 имеет на борту:

  • ШИМ – UC3843;
  • Держурка – DM311;
  • Супервизор – WT7525 N140.

Ниже предоставлена принципиальная схема блока питания INWIN POWER MAN IP-S350Q2-0.



Для превращения в зарядку достаточно поднять напряжение питания по шине +12 В до
14,2-14,4 В
. При этом зарядка АКБ будет происходить постоянным напряжением, будет меняться лишь сила тока по мере заряда АКБ. На плате предусмотрен подстроечный резистор, которым можно регулировать выходное напряжение в небольших пределах.

Диапазон регулировки составляет примерно от 11 до 13,5 В, при выходном напряжении более 13,5 В блок может остановиться т.к. супервизор WT7525 N140 отключит его.

Для возможности подстройки напряжения более 13,5 В ,необходимо удалить супервизор WT7525 N140 из платы и поставить перемычку между 2 и 3 посадочными выводами.

Проверяем работу блока. Если старта нет – удаляем с платы конденсатор С32.

После старта выходное напряжение можно поднимать выше 13,5 В, но, предела регулировки недостаточно.

Для этого необходимо откорректировать сопротивление резистора обозначенного схеме R68, он включен последовательно с подстроечным.

Можно впаять новый 1,8 кОм вместо 2 кОм или поставить параллельно штатному резистору еще один на 20 кОм. Результат будет один и тот же. На плате, нужный резистор, отмечен синей стрелкой.

После корректировки этого резистора, предел подстройки превысит 14,4 В, можно установить нужное напряжение на выходе с помощью подстроечника и пользоваться зарядным устройством.


Важно! Блок питания без дополнительной защиты боится короткого замыкания и переполюсовки. Крайне желательно оснастить устройство вольтамперметром, защитой от переполюсовки и короткого замыкания.


Выше описанный материал по нашим наброскам изготовил и предоставил Виталий Ликин из Волгограда.

VK

Facebook

Twitter

Odnoklassniki

comments powered by HyperComments

Блок питания PowerMan IP-P350Q2-0

Уважаемые радиолюбители и умельцы! По случаю «зашел» на форум по импульсным блокам питания и «увидел» проблему с блоком питания компьютера Power Man IP-P350 Q2. Многие ищут его принципиальную электрическую схему. Схему блока некоторые ловкачи предлагали за деньги. Может они и не большие, но мне такой «современный» подход в распространении знаний в массы не по душе.

Прорисовав электрическую принципиальную схему указанного блока питания предлагаю ее для обозрения. Статей о проверке и ремонте блоков питания в «сети» достаточно, поэтому писать об этом не буду. Если кому-то захочется переделать этот блок питания в зарядное устройство аккумуляторов, тот найдет в приведенной схеме нужные незначительные переделки схемы для достижения заданной цели.

Основным отличием этого блока является применение супервизора WT7525. Его специализация по всем напряжениям блока питания пошла не на пользу блоку. Топология платы стала из-за этого очень плотная. Супервизор WT7510 с меньшим числом информационных входов и применением аналоговых узлов сложения напряжений, вырабатываемых блоком, делает топологию платы менее насыщенной.

В остальном блок питания очень хорош. Рабочий инвертор работает очень стабильно (на осциллографе отчетливо можно наблюдать процессы в течение нескольких периодов) с низким фоном гармоник из-за стабильной частоты управляющих импульсов ШИМа. Если на выходе ШИМ вы видите четко только один управляющий импульс, надо добиваться его стабильности, проверяя питание ШИМ и его управляющего напряжения от PC2.

«Узревшего» различие между предложенной схемой и «фактурой», прошу донести информацию до масс умельцев.


Схема электрическая принципиальная Power Man IP-P350Q2-0

См.  схему электрическую принципиальную Power Man IP-P350Q2-0 (85.79 Кбайт) в формате PDF.

02 июня 2015—02 июня 2015

Олег Проскурня
Реклама от хост-провайдера

Зарядное из блока питания компьютера на ШИМ HS8108B (SG6105)

Блок с подобным ШИМ мы уже успешно переделывали в зарядное устройство, но сейчас пойдем совсем по другому пути. Интересен этот вариант переделки тем, что выходное напряжение можно выставлять в довольно широком диапазоне. А при желании можно переделать такой блок питания компьютера в регулируемый блок. Но обо всем по порядку. Сегодня мы расскажем, как сделать зарядное из блока питания компьютера на ШИМ

HS8108B (аналог SG6105).

Как сделать зарядное из блока питания компьютера на ШИМ HS8108B?

Для переделки мы приобрели новый и недорогой блок питания GameMax 400W. Относительно самого блока хотелось бы добавить пару строк.

Блок не обезображен элементами входного фильтра, в нем отсутствуют Y-конденсаторы, выходные электролиты распаянные не все, по сути это блок тянет на честных 300-350 Вт, но для автомобильного зарядного устройства подходит в самый раз. Вместо обозначенных в характеристиках двух шин +12 В на самом деле присутствует только одна. Единственное преимущество — простая схема и низкая цена.

Немного о ШИМ такого БП. Для начала хотелось бы сказать пару слов о ШИМ HS8108b. HS8108b — это полный аналог SG6105

.

По сути, помимо ШИМ он еще выполняет функцию мультивизора, отслеживает выходное напряжение по основным шинам + 3,3 В; + 5 В; +12 В; на отклонение от нормы. При заниженном (или завышенном) напряжении на любой из этих шин блок просто уйдет в защиту. Для обмана мультивизора нам придется эмулировать несколько идеальных напряжений и подавать на соответствующие входы микросхемы. Для создания напряжений 3,3 В; 5 В; 12 В мы используем стабилизатор 7812 и резистивный делитель подключенный к его выходу. Собираем данную схему на отдельной небольшой плате.

Когда плата будет готова можно будет приступить к самому блоку питания.

Для удобства мы подобрали максимально приближенную схему этого бока питания. Ей оказалась Colorsit 300U, единственные отличия — не совпадает нумерация деталей, а также дежурка

GameMax 400W выполнена на WG606P. Обвязка ШИМ без изменений, что нам и нужно.

На следующей схеме обозначены все дальнейшие изменения, которые производились для переделки в зарядное из блока питания компьютера.




Первым делом разбираем блок питания, отпаиваем провода, выходящие из блока. Оставляем только черный — «минус» и желтый — «шина +12 В«. Для автоматического старта зеленый обрезаем и подпаиваем на минус. После первых манипуляций проверяем работоспособность блока.

Далее закрепляем изготовленную плату со стабилизатором и делителем на радиаторе или в другом удобном месте.

Подключаем питание стабилизатора. На этом моменте важно убедиться, что на выходе нашей платы присутствуют необходимые напряжения: 12 В; 5 В; 3,3 В

.

Если сделанная плата формирует необходимые напряжения правильно, можно ее подключать к ШИМ. Отключаем ножки ШИМ, которые мониторят напряжения по шинам 12 В; 5 В; 3,3 В, и подключаем их к соответствующим выводам платы.

При подключении важно внимательно рассмотреть трассировку платы. Некоторые дорожки придется перерезать, возможно, где-то необходимо бросить перемычку.


Если плата правильно подключена — блок питания запустится и на выходе мы получим 12 В. На этом этапе мультивизор уже не отслеживает выходное напряжение.

После отключения мониторинга выходных напряжений мы можем приступить к поднятию напряжения до 14,2 В. Измеряем напряжение на 17 ножке ШИМ. У нас оно составило 2,5 В.

Измеряем сопротивление резистора, соединяющего

17 ножку HS8108B с минусом (на схеме обозначен как R23), предварительно отпаиваем один из его выводов. Сопротивление составило 13,1 кОм.

Удаляем резистор, соединяющий 17 ножку HS8108B с шиной + 5 В (на схеме обозначен как R25), вместо R28 устанавливаем многооборотный подстроечный резистор.

Подстроечный резистор предварительно настраиваем на такое сопротивление, чтобы напряжение на делителе состоящего из R25 (подстроечный) и R28 (13 кОм) составило 2,5 В. Из расчета вышло, что R25 должен быть настроен на 49 кОм.

Настраиваем подстроечный резистор на 49 кОм и заменяем им резистор

R28.

Включаем блок, на выходе должно быть напряжение очень близкое к 12 В.

С помощью подстроечного резистора можно производить настройку выходного напряжения до 14,2 В.

Если есть желание превратить такой блок в регулируемый, необходимо подстроечный резистор заменить переменным, поставить на выходные шины электролитические конденсаторы с высшим рабочим напряжением и изменить номинал нагрузочных резисторов на шинах.

После установки необходимого напряжения можно вывести крокодилы, установить вольтамперметр для контроля процесса зарядки и добавить на выходе защиту от переполюсовки.

Важно! Защиту от переполюсовки использовать желательно, т.к. при подключении АКБ неправильной полярностью блок моментально выходит из строя.

Ну и финальные тесты, зарядное из блока питания компьютера уже готово. Важно помнить, что зарядка АКБ происходит постоянным напряжением. Сила тока при подключении сильно разряженной батареи кратковременно может достигать 10 А, но снижается по мере заряда. При токе порядка 0,5 А заряд АКБ можно считать оконченным.

Если Вам понравилась идея переделки, пишите комментарии, задавайте вопросы и не забывайте поделиться статей в социальных сетях.

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

Ремонт блока питания для светодиодной ленты

Используя светодиодное освещение, многие радуются лишь до тех пор, пока оно исправно работает. Поломка блока питания светодиодной ленты может не только огорчить, но и ударить немного по карману. Сегодня мы рассмотрим ремонт блока питания для светодиодной ленты, типичные его неисправности и методики их устранения.

Ремонт блока питания для светодиодной ленты

Зачастую все дешевые китайские блоки питания для светодиодных лент выглядят примерно так. Стоит ли браться за ремонт такого блока? Стоит однозначно!

Как правило, если плата блока питания целая, и не превратилась в кусок обуглившегося радио-хлама, то ремонту такой блок подлежит.

Схема, блок питания для светодиодной ленты

Схемы в таких блоках почти всегда одинаковые, для наглядности можно пользоваться схемой изображенной ниже. Типичная схема, которая используется в подобных блоках питания.

Основные неисправности в этих блоках питания:

  1. Микросхема ШИМ контроллер – TL494. Аналог: МВ3759, IR3M02, М1114ЕУ, KA7500 и т.д.
  2. Конденсаторы С22, С23 – высыхают, вздуваются и т.д.
  3. Ключевые транзисторы Т10, Т11.
  4. Сдвоенный диод D33 и конденсаторы С30-С33.
  5. Остальные элементы выходит из строя крайне редко, но тоже не стоит упускать их из вида.

Для начала вскрываем наш блок и осматриваем предохранитель. Если он целый, подаем питание и измеряем напряжение на конденсаторах С22, С23. Оно должно быть порядка 310 В. Если напряжение такое, значит сетевой фильтр и выпрямители исправны.




Следующим этапом станет проверка ШИМ. У нашего блока это микросхема КА7500.

– на 12 выводе должно быть около 12-30 В. Если нет, проверяем дежурку. Если есть – проверяем микросхему.

–  на 14 выводе должно быть около +5 В.

Если нет, меняем микросхему. Если есть – проверяем микросхему осциллографом согласно схеме.

Как проверить TL494 без осциллографа?

Если нет осциллографа, рекомендуем взять заведомо рабочий блок питания, установить вместо микросхемы DIP панель, куда можно подключать проверяемые ШИМ контроллеры. Это единственный достоверный и вменяемый способ проверки TL494 без осциллографа.

Наша микросхема КА7500 после проверки, оказалась неисправной. Перед установкой нового ШИМ контроллера устанавливаем DIP панель.

На фото мы подготовили все для замены ШИМ.

Меняем ее на аналог TL494CN.

Следующим этапом станет небольшая модернизация блока. Если внимательно осмотреть сетевой фильтр есть место для установки варистора.

Устанавливаем варистор К275. Он будет защищать блок от скачков высокого напряжения. При коротком скачке – варистор поглощает энергию импульса, а при длительном – сопротивление варистора станет настолько малым, что сработает предохранитель и вся схема блока останется целой.

Блок перед финальным тестом.

После замены неисправных компонентов подключаем блок в сеть. Как видим блок прекрасно работает. Подстроечным резистором Р1 (возле зеленого светодиода) можно точно выставить выходное напряжение на блоке питание. Диапазон корректировки лежит в пределах от 11,65 В. до 13,25 В.

Как видим все работает исправно, ремонт блока питания для светодиодной ленты окончен. Учитывая, что в блоке отсутствует активная система охлаждения, рационально установить на крышку блока дополнительный кулер, закрытый сеткой в виде гриля.

 

Важно! При ремонте блока многие его компоненты находятся под опасным для жизни напряжением. Не стоит проводить манипуляции без достаточных знаний и навыков!

VK

Facebook

Twitter

Odnoklassniki

comments powered by HyperComments

Блок питания ATX на SG6105 — переделка в лабораторный

Блоки на основе ШИМ SG6105 и им подобные, очень плохо поддаются переделкам. Вездесущие защиты, встроенные в эту микросхему, напрочь отбивают охоту радиолюбителей иметь дело с такими блоками. Сегодня у нас простое решение такой проблемы! Блок питания ATX COLORSit 330U-FNM на ШИМ SG6105 — переделка в лабораторный с помощью переходника на TL494.

Блок питания ATX на ШИМ SG6105 — переделка в лабораторный

Недавно мы публиковали материалы по переходнику с SG6105 на TL494, с его помощью очень легко можно было заменить одну микросхему другой и избавиться от назойливых защит. Этот отдельный модуль устанавливался на штатное место SG6105 и позволял проводить минимальную корректировку основной платы блока.

При переделке блока на ШИМ SG6105 в лабораторный, изменений в основной плате будет немного больше, но обо всем по порядку.

Изменение в основной плате блока

Ниже приведена схема COLORSit 330U-FNM на ШИМ SG6105, плата этого блока точно совпадает со схемой.

Первым делом необходимо удалить часть компонентов, которые нам будут уже не нужны. В основном это касается силовых шин +5; +3,3; -12 В, элементов обвязки защит и служебных выводов SG6105.

Дополнительные изменения в плате касаются новых элементов, выделенных красными рамками с нумерацией изменений.

  1. Устанавливаем новые номиналы для резисторов обратной связи с шины +12 В. Это для R2848 кОм, R2312 кОм.
  2. Переключаем питание ШИМ на другую обмотку дежурки с напряжением 15-17 В, т.к. для питания TL494 нужно минимум 7 В. (т.е. R22 подключаем к диоду D12)
  3. Питание вентилятора также нужно брать с этой же обмотки дежурки, используя дополнительный стабилизатор LM7812.
  4. Устанавливаем токоизмерительный шунт, в качестве которого используем три резистора номиналом 0,1 Ом, мощностью 10 Вт. Минусовая клемма выхода блока будет теперь уже после шунта.
  5. Следует поставить новый выходной электролитический конденсатор с рабочим напряжением минимум 25 В, номиналом в 1000-2200 мкФ.
  6. Нагрузочный резистор R27 лучше заменить резистором с чуть большим сопротивлением в 1 кОм.
  7. Если в блоке используется маломощная диодная сборка по шине +12 В, параллельно ей желательно установить еще одну или заменить на более мощную.



Переходник с SG6105 на TL494 для регулировки тока

Схема переходника с SG6105 на TL494 для регулировки тока включает в себя: TL494 с необходимой обвязкой и две TL431. По сути, можно обойтись лишь одной TL431, которая используется для дежурки. Поскольку схемы блоков на SG6105 бывают разные нельзя заранее сказать, какая из TL431 используется дежуркой, а какая для шины 3,3 В, для универсальности решено было оставить обе.

16-я ножка TL494 подключается на минусовый выход после шунтов (обозначенная синей рамкой), место подключения вывода к 16 ножке тоже обозначено и указанно на схеме. R4 используется для регулировки напряжения, а R10 для регулировки тока. Расчет обвязки выполнен для выходного напряжения 0-17 В; 0-15 А. Печатку для переходника с регулировкой тока можно будет скачать в конце статьи.


Если токи в 15А не нужны, достаточно убрать один из токоизмерительных резисторов 0,1 Ом (использовать два вместо трех), при двух — максимальный рабочий ток будет около 10 А.


Вот таким получился наш переходник.

Сборка блока

Для установки переходника на место SG6105 нужно использовать панельку. После финишной сборки переходник желательной прочно зафиксировать в разъеме используя термо силикон или что-то другое.

Из-за больших размеров трех резисторов по 10 Вт их очень удобно крепить на радиатор, на радиатор также следует установить LM7812 т.к. при работе вентилятора она будет сильно греться.

Вот так выглядит блок после удаления лишних компонентов и готовый к установке переходника.

Подключаем наш переходник в панельку микросхемы SG6105.

Такой переходник должен подходить практически ко всем блокам питания на SG6105, но необходимо быть внимательным при удалении ненужных компонентов и внимательно вникнуть в отличия схем и нумерации деталей.

Тесты

Поскольку вольтамперметр с диапазоном на 20А еще не приехал, используем мультиметр в качестве амперметра и простенький цифровой вольтметр, который питается от линии, на которой меряет напряжение (из-за этого его показания и пропадают при напряжении ниже 3 В).

Немного слов о стабильности напряжения. Пульсации 0,1 В с периодом 10 миллисекунд на максимальном токе 15 А и выходном напряжении 17 В.

Печатку платы переходника в формате lay можно скачать по ссылке ниже:

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

Переделка компьютерного блока питания FSP ATX-500PNR 500W в зарядное устройство

Не всегда для переделки в зарядное устройство используются старые, никому не нужные блоки питания компьютера. Сегодня у нас переделка компьютерного блока питания FSP-500PNR в зарядное устройство. Фотоматериалы нам предоставил Александр Прошкин, которому в процессе мы давали подсказки и подробные инструкции.

Переделка компьютерного блока питания FSP ATX-500PNR 500W в зарядное устройство

Главная цель – поднять выходное напряжение блока питания по шине +12 В до 14-14,5В. В таком случае АКБ будет заряжаться постоянным напряжением, меняться будет лишь сила тока. При начальном этапе сила тока заряда будет составлять порядка 8-10 А, по мере зарядки ток будет падать. При токе 0,5 А АКБ будет уже полностью заряжен.

Переделка компьютерного блока питания FSP ATX-500PNR 500W будет производиться в два этапа:

  1. Отключение супервизора WT7527 и организация автоматического старта БП.
  2. Корректировка выходного напряжения.

Отключения супервизора WT7527 и организация автоматического старта БП

Полной схемы FSP ATX-500PNR 500W в сети найти не удалось. Попадаются лишь фрагменты дежурки блока и др. Перед началом корректировки напряжения необходимо отключить защиту, которая построена на супервизоре WT7527.

Мы будем работать с доработанной схемой типового включения WT7527, которую можно найти в технической документации представленной производителем.

И так, для отключения супервизора необходимо установить перемычку (отмечена красным) на выход оптопары, которая подключена через резистор к 3-й ножке WT7527.






Установив в необходимом месте перемычку, WT7527 уже никак не будет влиять на работу блока. С учетом того, что ранее именно WT7527 отвечала за старт блока и мониторинг выходных напряжений, после установки перемычки блок будет включаться сразу же при включении в сеть.

Корректировка выходного напряжения в блоке питания

Перед началом корректировки желательно ознакомиться с максимально приближенной схемой этого БП. Это будет схема от блока FSP250-50PLA. Отличие от FSP500PNR  – дежурка и супервизор другие, но ШИМ CM6800 и силовая часть ну очень похожи.

Нам необходим лишь небольшой участок схемы.

Важно внимательно рассмотреть трассировку дорожек и не ошибиться с поиском резистора, который отмечен красной рамкой.

Выпаиваем CMD резистор и измеряем его сопротивление (4,6кОм). Устанавливаем на его место подстроечный резистор на 33кОм, предварительно настроенный также на 4,6кОм. Регулируя подстроечный резистор, мы сможем корректировать выходное напряжение и выставить необходимые 14-14,5В.

Останется лишь измерить текущее сопротивление подстроечного резистора после корректировки и заменить его постоянным.

Далее желательно подключить вольтапмерметр. Также необходимо учесть, что такое зарядное устройство из блока питания компьютера боится переполюсовки, для защиты на выходе можно использовать схему защиты от переполюсовки и короткого замыкания.

VK

Facebook

Twitter

Odnoklassniki

comments powered by HyperComments

Переделка блока питания в зарядное устройство на ШИМ 2003

Переделка блока питания в зарядное устройство на ШИМ 2003 является более сложной, чем на ШИМ TL494.  Уже опубликовав статью о том, как сделать зарядное устройство из блока питания на ШИМ 2003, пришла на ум еще одна идея альтернативной переделки. Быстренько подобрав аналогичный блок питания, мы приступили к ее реализации. В общем, читаем, что из этого получилось.

Переделка блока питания в зарядное устройство на ШИМ 2003

С той небольшой информации, что мы нашли в сети о ШИМ 2003, можно выделить один важный момент. При запуске блока ШИМ 2003 включает на пару секунд блок и мониторит напряжение по шинах +3,3 В; + 5 В и +12 В. Если напряжение на них будут отличаться, то блок не запустится, а если напряжения будут находиться в очень близких рамках, то работа блока будет продолжена.

Для поднятия напряжения по шине + 12 В, нам надо собрать небольшую плату по нижеуказанной схеме.

Схема имеет три стабилизатора 78хх серии 3,3 В; 5 В и 12 В.




С помощью их мы будем эмулировать необходимые напряжения для старта ШИМ 2003.

Для удобства ниже находится схема блока питания на ШИМ 2003.

Следующая схема – готовая переделка блока питания в зарядное устройство на ШИМ 2003 со всеми необходимыми изменениями, которые опишем ниже.

Приступаем непосредственно к переделке. Разбираем блок и выпаиваем все провода выходящие с блока (оставляем только желтый +12 В и черный минус). Зеленый обрезаем и подключаем на минус блока (для автоматического старта). Питание вентилятора лучше брать с шины – 12 В или в дальнейшем со стабилизатора 7812 на нашей плате.

Включаем блок, если все правильно блок запуститься. Закрепляем нашу плату с тремя стабилизаторами к радиатору.

Подключаем питание к плате стабилизаторов.

Питания можно брать с конденсатора С15, на нем напряжение дежурки порядка 16-17 В.

После этого важно запустить блок и проверить, как работает наша плата. На выходе каждого стабилизатора должно быть соответствующее напряжение.

Следующим шагом станет подключение нашей платы к ШИМ 2003 согласно схеме.

Возможно, некоторые дорожки придется перерезать, на некоторых участках бросить перемычки. Важно внимательно рассмотреть трассировку дорожек на плате и не допустить ошибки.

Запускаем блок питания. На выходе должно быть +12 В. Если блок стартует на секунду и останавливается – проверяем правильность подключения, ищем где допустили ошибку.

Если блок стартует нормально, можно сказать самый сложный участок работы позади. Далее необходимо удалить с блока резисторы R60 и R62. Вместо R60 необходимо поставить подстроечный резистор настроенный примерно на 60 кОм.

Резистор лучше брать многооборотный, он даст более точную и плавную подстройку.

Включаем блок. На выходе напряжение должно быть уже не 12 В. У нас оно составило 17,6 В. Такое напряжение очень вредно для выходных конденсаторов (у них максимально 16 В и для вентилятора, который рассчитан на 12 В), долго не стоит держать включенным блок на таком напряжении.

Подстроечным резистором корректируем выходное напряжение до 14,2 В.

На этом переделку можно считать оконченной. Для защиты от короткого замыкания и переполюсовки можно использовать схему, описанную в этой статье.

В чем принципиальное отличие от метода, описанного ранее о переделке БП на ШИМ 2003? Отличие в плате, с помощью которой мы обманывали ШИМ. Там использовался стабилизатор и резистивный делить, особенностью которого было точное совпадение номинала резисторов со схемой. Тут же мы использовали три стабилизатора, нам не пришлось перерывать гору резисторов и искать, например резистор на 10 кОм, сопротивление которого будет именно 10, а не 9,5 кОм.

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

Отправить ответ

avatar
  Подписаться  
Уведомление о