Содержание

Учебно-исследовательская работа на тему «Необычные многогранники из бумаги»

МОУ Можаров – Майданская СШ

Учебно-исследовательская работа

на тему

«Необычные многогранники

из бумаги»

hello_html_5a50bd30.jpg

Выполнил:

ученик 9 класса Колбасов А.В.

Руководитель:

учитель математики Погодина А.А.

Актуальность выбранной темы:

Цель:

  • развитие познавательного интереса к необычным формам многогранников.

  • заинтересовать окружающих такими необычными многогранниками.

Задачи:

  • изучить историю многогранников;

  • изучить материал по изготовлению многогранников из бумаги в стиле оригами;

  • доказать себе, что я могу это сделать;

  • показать другим как это делать.

История фигур

Древняя математическая наука уходит своими корнями в далекое прошлое, во времена процветания Древнего Рима и Греции. Тогда было принято связывать технические аспекты с философскими. Поэтому, согласно учению Платона (один из древнегреческих мыслителей), каждый из многогранников, состоящих из определенного количества одинаковых плоскостей, символизирует одну стихию. Фигуры из треугольников — октаэдр, икосаэдр и тетраэдр — ассоциируются с воздухом, водой и огнем соответственно и могут преобразовываться друг в друга благодаря однотипности граней, каждая из которых имеет три вершины. Землю же символизирует гексаэдр из квадратов. А додекаэдр, благодаря особенным пятиугольным граням, выполняет декоративную роль и является прототипом гармонии и мира. Также известно, что один из греческих математиков, Евклид, доказал в своем учении «Начала» неповторимость упомянутых платоновых тел и их свойство «вписываться» в сферу

Правильные многогранники

Все фигуры отличаются друг от друга различным количеством граней и их формой. Кроме этого, некоторые модели могут быть сложены из цельного листа (как описано в примере изготовления икосаэдра), другие – только путем сбора из нескольких модулей. Классическими считаются правильные многогранники. Из бумаги их делают, придерживаясь главного правила симметрии – наличия в шаблоне полностью одинаковых граней. Существует пять основных видов таких фигур. В таблице приведены сведения об их названиях, количестве и формах граней: hello_html_m8e395b4.png

Бумажные поделки – это не только различные открытки и аппликации, выполненные в виде плоских изделий. Очень оригинальными получаются объемные модели фигур (фото 1). Например, можно сконструировать из бумаги многогранник. Рассмотрим некоторые способы его выполнения, используя схемы и фотографии.

hello_html_m2dd3f5ee.jpg

Сделан показанный из бумаги многогранник путем сворачивания сомкнутых между собой двадцати равнобедренных треугольников. Схема наглядно демонстрирует выкройку для изготовления фигуры. Рассмотрим подробнее все этапы работы по созданию икосаэдра. Делаем двадцатигранник Икосаэдр состоит из одинаковых по размеру равнобедренных треугольников. Его можно легко сложить, используя представленную на рисунке 2 развертку. Возьмите прямоугольный лист бумаги. Начертите на нем двадцать одинаковых по размеру и форме треугольников, расположив их в четырех рядах. При этом каждая грань одного будет одновременно являться стороной другого. Полученный шаблон используйте для изготовления заготовки. Она будет отличаться от основы-развертки наличием припусков для склеивания по всем внешним линиям. Вырезав из бумаги заготовку, согните ее по линиям. Формируя из бумаги многогранник, замыкайте крайние ряды между собой. При этом вершины треугольников соединятся в одну точку. hello_html_m8e395b4.png

Разнообразие фигур

На основе пяти приведенных видов, используя умение и фантазию, умельцы легко конструируют множество различных моделей из бумаги. Многогранник может совершенно отличаться от вышеописанных пяти фигур, формируясь одновременно из различных по форме граней, например из квадратов и треугольников. Так получаются архимедовы тела. А если одну или несколько граней пропустить, то получится открытая фигура, просматриваемая как снаружи, так и внутри. Для изготовления объемных моделей используются специальные выкройки, вырезаемые из достаточно плотной, хорошо держащей форму, бумаги. Делают и особенные многогранники из бумаги. Схемы таких изделий предусматривают наличие дополнительных, выступающих модулей. Разберем способы, как сконструировать очень красивую фигуру на примере додекаэдра (фото 3). Как сделать из бумаги многогранник с двенадцатью вершинами: первый способ Такую фигуру еще называют звездчатым додекаэдром. Каждая из его вершин в своем основании является правильным пятиугольником. Поэтому делают двумя способами такие многогранники из бумаги. Схемы для изготовления будут несколько отличаться друг от друга. В первом случае это единая деталь (фото 3),hello_html_m10df1e36.png

в результате сворачивания которой получается готовое изделие. Кроме основных граней, на чертеже присутствуют соединительные части для склеивания, благодаря которым фигура смыкается в единое целое. Для изготовления многогранника вторым способом нужно сделать отдельно несколько шаблонов. Рассмотрим процесс работы подробнее. Как сделать многогранник из бумаги: второй способ Изготовьте два главных шаблона

Первый. Нарисуйте на листе окружность и поделите ее поперек на две части. Одна будет основой для выкройки, дугу второй сразу сотрите для удобства. Поделите деталь на пять равных частей и ограничьте все радиусы поперечными отрезками. В результате получатся соединенные вместе пять одинаковых равнобедренных треугольников. Изобразите рядом примыкающую к среднему отрезку точно такую же полуокружность, только в зеркальном отражении. Полученная деталь при сворачивании выглядит как два конуса. Изготовьте таких аналогичных шаблонов всего шесть штук. Для их склеивания используется вторая деталь, которая будет помещаться вовнутрь.

Второй. Этот шаблон – пятиконечная звезда. Выполните одинаковые двенадцать заготовок. Формируя многогранник, каждую из звезд с подогнутыми вверх концами помещают внутрь конусообразных деталей и приклеивают к граням. Полный сбор фигуры получается путем соединения двойных блоков дополнительными отрезками бумаги, заводя их вовнутрь. Моделируя изделия, довольно проблематично сделать их разными по размеру. Готовые модели многогранников из бумаги не так-то просто увеличить. Для этого недостаточно просто сделать припуски по всем внешним границам. Нужно масштабировать отдельно каждую из граней. Только так возможно получить увеличенную копию первоначальной модели. Используя второй способ изготовления многогранника, сделать это намного проще, так как будет достаточно увеличить первоначальные заготовки, по которым уже выполняется нужное количество отдельных деталей.

Додекаэдр в технике оригами

Модуль оригами — отличная основа для додекаэдра. Понадобится 30 прямоугольных или квадратных листов бумаги. Каждый из листочков складывается пополам, затем каждую половинку нужно отогнуть в противоположную сторону — получится «гармошка» в четыре сложения. Иногда, если лист не квадратный, делают «гармошку» в три сложения. В итоге у вас в руках узкая промоугольная полоска. Затем с каждой стороны прямоугольника по узкой стороне нужно отогнуть уголок. Уголки складываются в одну сторону — это будущие крепления, которые будут заправляться в «гармошку». Затем согните модуль вовнутрь наискосок по диагонали от маленьких боковых уголков. Таким образом, один модуль для оригами додекаэдра — трехмерный, он включает два ребра будущей фигуры и уголки. Когда все модули готовы, можно начинать сборку. hello_html_m50fd9962.jpg

Сборка начинается с одного узла, для которого необходимо взять три модуля. На рисунке ниже это голубой, розовый и желтый модули оригами. Схемы сборки  достаточно просты, и с такими фигурами легко справляются даже начинающие (36 заготовок).

hello_html_19cbeb19.jpghello_html_73331464.jpghello_html_45b88171.jpghello_html_51b14842.jpg

hello_html_1954778b.jpghello_html_m4f945fc3.jpghello_html_m18ce528d.jpghello_html_2e67e796.jpghello_html_m25d97cfb.jpg

Какие поделки можно сделать на основе додекаэдра?

Каждая сторона додекаэдра из бумаги — это плоский пятиугольник, который сам по себе может являться основой для самых разных и причудливых форм. Например, на фото ниже пятиугольник заменен пятиконечнй звездой. hello_html_m441b707d.jpg

Ребра в такой фигуре отсутствуют, хотя предполагаются. Как сделать додекаэдр из бумаги в виде звезды? Замените в развертке, представленной выше, каждый пятиугольник необходимой пятиконечной фигурой и соедините их не по ребрам, а по вершинам. На этом фото представлен звездчатый додекаэдр. В основе каждого «луча» лежит все тот же пятиугольник. Вместо пятиугольных пирамид может быть выполнена любая объемная фигура.

Многогранник из тетраэдров.

Делаем 30 модулей(заготовок)

hello_html_m532f4b4a.jpghello_html_5f10b495.jpg

hello_html_73f6ba1d.jpghello_html_297fc14e.jpghello_html_mc49295f.jpghello_html_m5bd7dca2.jpghello_html_5636ed63.jpghello_html_m442c2cc4.jpghello_html_m5661c443.jpg
hello_html_m5037df98.jpghello_html_m4b4c5b12.jpghello_html_m7313d9b1.jpg

Вывод: Изготовление необычных многогранников из бумаги в стиле оригами развивает пространственное воображение, улучшает моторику пальцев рук, делает человека более целеустремлённым и трудолюбивым.

Додекаэдр из бумаги: пошаговая инструкция сборки оригами

Додекаэдр

Одной из простейших бумажных кусудам считается додекаэдр-оригами. Но это не значит, что он выглядит неэффектно, особенно когда речь идёт о звёздчатой разновидности. Декоративный многогранник, подобно другим своим родственникам – кусудамам, отлично подходит для праздничного украшения помещений или в качестве оригинального подарка. Мини-додекаэдры можно использовать как модные украшения, сделав из них серьги или кулон.

Мини-додекаэдр

Ажурная модель

Существует несколько типов оригами-додекаэдров, но сделать эту прозрачную конструкцию из бумажных модулей проще всего. Хорошее задание для детей, желающих познакомиться с азами пространственной геометрии и взрослых, ищущих эффективное средство для снятия стресса. Желательно использовать для игрушки бумагу ками с рисунком, она придаст особый шарм и колорит.

Пошаговая инструкция:

  1. Для создания кусудамы понадобится 30 одинаковых модулей. Их складывают из прямоугольников, имеющих соотношение сторон 3:4. Например, размером 6х8 см, 9х12 см и так далее. Можно брать как одно-, так и двухсторонние листы.
  2. Складываем каждый прямоугольник пополам вдоль длинной стороны. После чего делаем Z-образный сгиб.
  3. Располагаем получившуюся полоску длинной стороной к себе. Загибаем правый нижний угол вверх. Переворачиваем заготовку на 180°. И повторяем действие для правого нижнего угла (другого).
  4. Складываем фигуру по диагонали, как показано на рис 4.
  5. Модули для додекаэдра-кусудамы готовы.

Детали для додекаэдра

Остаётся соединить их в пространственную композицию. Для этого короткую часть одного модуля вставляем к «карман» длинной части другого. И располагаем так, чтобы внутренние углы и грани обоих элементов совпали.

Сборка додекаэдра - шаг 1

Аналогичный образом добавляем третий модуль, соединяя его с предыдущими двумя и формируя устойчивый конструктивный узел.

Сборка додекаэдра - шаг 2

Продолжаем крепить детали друг к другу, пока не получится объёмная фигура.

Сборка додекаэдра - шаг 3

За счёт необычной бумаги с принтом, получается стильный предмет декора. Чтобы кусудама не распадалась, лучше соединить узловые элементы с помощью клея.

Сборка додекаэдра - шаг 4

Подробная сборка ажурного додекаэдра представлена и в видео-МК:

Кусудама из правильных пятиугольников

Схема сборки додекаэдра-оригами из пентагонов – равносторонних пятиугольников, разработана американским дизайнером Дэвидом Брилом. Для модулей он использует 12 листов формата А6, то есть 10,5х14,8 см.

Схема сборки

Пошаговая инструкция:

  1. Исходный прямоугольник складываем пополам в продольном и поперечном направлении, намечая серединные оси.
  2. Правый верхний и левый нижний угол сгибаем к центру. Получаем своего рода полуконверт.
  3. Аналогично складываем противоположные углы.
  4. Пятиугольную заготовку, «закрываем» сверху вниз «долиной».
  5. Верхний угол опускаем вниз и возвращаем обратно. На месте пересечения получившейся линии с вертикальной осью фигуры, образуется точка. К ней поочерёдно сгибаем внешние углы.
  6. Модуль-пентагон готов. Последние два сгиба раскрываем – это будут детали крепления элементов между собой.
  7. Боковые «ушки» одной детали вставляем в «карманы» другой. Места соединения для надёжности фиксируем клеем.
  8. Продолжаем сборку, пока не используем все 12 модулей.

Из подобных додекаэдров часто делают настольные календари. На каждой грани как раз размещается по месяцу. Соответствующие распечатки с числами и днями недели, можно скачать из интернета и наклеить на стенки модели. Получится не только красиво, но и практично.

Календарь в виде додекаэдра

Додекаэдр-звезда

Правильные звёздчатые многогранники относятся к самым красивым геометрическим фигурам. С момента своего открытия в XVI веке, они считались символом совершенства Вселенной. Малый звёздчатый додекаэдр впервые построил немецкий астроном и математик Иоганн Кеплер – создатель знаменитой теории о строении Солнечной системы. Многогранник имеет собственное имя: Арур Кэли, в честь английского учёного, сделавшего огромный вклад в развитие линейной алгебры.

Малый звёздчатый додекаэдр-оригами представляет собой фигуру из 12 граней-пентаграмм, с пятью пентаграммами, сходящимися к вершинам. Он состоит из 30 модулей, которые складываются из квадратов, размером 8х8 см. Лучше всего использовать профессиональную бумагу-оригами, которая позволит создавать чёткие грани и жёсткие узлы, не позволяющие конструкции распадаться или деформироваться.

Интересные факты о додекаэдре

Правильные многогранники с древних времен восхищали человечество и служили прообразом мирового устройства. Как оказалось, подобные представления небезосновательны. В 2003 году, анализируя данные исследовательского аппарата WMAP, запущенного NASA для изучения фоновых космических излучений, учёные выдвинули гипотезу о додекаэдрическом строении Вселенной по принципу сферы Пуанкаре.

Нечто подобное предполагал и живший в V в. до н. э. древнегреческий философ Платон. В своём учении о классических стихиях, он назвал додекаэдр «образцом божественного устройства Космоса». Вообще же все пять известных правильных многогранников до сих пор называют Платоновыми телами, по имени мыслителя, впервые выстроившего с их помощью чёткую картину мироздания.

Пентагон, лежащий в основе додекаэдра, построен на принципах «золотого сечения». Эта пропорция, которую древние греки считали «божественной» часто встречается в природе. Интересно, что соотношения «золотого сечения» присущи лишь додекаэдру и икосаэдру, у трёх других Платоновых тел его нет.

Игрушки древних римлян

На территориях Европы, некогда принадлежавших Римской империи, до сих пор находят загадочные бронзовые фигурки в форме додекаэдра. Предметы пустотелые, с круглыми отверстиями на каждой стороне и шариками, обозначающими вершины. Учёные пока не смогли однозначно определить функцию этих объектов. Первоначально считалось, что это своеобразные игрушки, однако позднее их отнесли к предметам культа, символизирующим устройство Вселенной. Или Земли, согласно теории, последовательно выдвигаемой с XIX века мировыми физиками, в том числе и российскими.

Древний додекаэдр

Впервые о том, что наша планета представляет собой кристалл додекаэдрической формы, заговорили французский математик Пуанкаре и геолог-исследователь де Бемон. Они утверждали, что земная кора, словно футбольный мяч, состоит из 12 правильных пятиугольников, в местах соединения которых, располагаются аномальные зоны и планетарные силовые поля.

В 1920-х годах идею французских коллег подхватил русский физик Степан Кислицын. Он пошёл ещё дальше, заявив, что планета не остаётся в стабильном состоянии, она растёт, из додекаэдра постепенно трансформируясь в икосаэдр. Учёный разработал модели подобных изменений, обозначив узлы гигантской кристаллической сетки, где, по его мнению, располагались месторождения полезных ископаемых: угля, нефти, газа и так далее. В 1928 году Кислицын, опираясь на свои исследования, указал на поверхности земного шара 12 алмазоносных центров, из которых 7 к настоящему времени находятся в активной разработке.

Додекаэдр

Идеи кристаллического строения планеты продолжают развиваться в XXI веке. Согласно последней гипотезе, подобная структура свойственна всем живым организмам, не только космическим телам, но и человеку. Тем интереснее будет собирать додекаэдр-оригами, чувствуя свою сопричастность к великим тайнам Вселенной.

Оригами и набор «Волшебные грани»

Оригами и набор Волшебные грани

В этой статье мы постараемся рассказать можно ли наборы «волшебные грани» отнести к разновидности оригами. Как одну и ту же геометрическую фигуру можно получить, используя детали из «волшебных граней» и применяя технику оригами. Какие можно выделить плюсы и минусы и в чем отличия?

 

Для непосвященного взгляда может возникнуть впечатление, что бумажные модели многогранников в своём исполнении мало чем отличаются друг от друга. А между тем, если взять для более внимательного сравнения две распространенные техники из арсенала «бумажного творчества» — моделирование и оригами, то мы обнаружим существенное отличие в подходах, делающие их принципиально несхожими.

 

Так, моделирование из бумаги, а набор «Волшебные грани» относится к его числу, в своём подходе предварительно «разбирает» пространственную фигуру на фрагменты-развёртки. Перенесённые на бумагу развёртки вырезают, сгибают и склеивают. Место соединения у одной из поверхностей имеет нахлёст — клапан. Клапан со стороны примыкания к соседней детали промазывается клеем. Последовательно склеенные поверхности в итоге образуют прочную конструкцию.

Оригами и набор Волшебные грани

Техника же оригами, во всяком случае, в её классической версии, не предполагает, что бумагу режут и соединяют с помощью клея. Бумажные листы, чаще всего квадратной формы, складываются таким образом, что трение в складках удерживает фигуру в собранном виде, не давая ей развалиться.

 

Оригами и набор Волшебные грани      Оригами и набор Волшебные грани

 

В случае с оригами особого внимания заслуживает его «модульная» разновидность, так как она лучше всего приложима к созданию многогранников. В модульном оригами в процессе складывания используется несколько листов бумаги. Количество таких листов может быть очень велико и зависит от числа модулей в конструкции собираемой фигуры. Своеобразным олицетворением самого принципа модульного оригами является модуль Сонобе, представляющий собой сложенный из квадратного листа параллелограмм с двумя кармашками для соединения его с аналогичными модулями.

 

Бесконечно велико многообразие пространственных тел, создаваемых на основе модуля Сонобе, но все они состоят из одного элемента, приводящего к однообразию образующих фигуру поверхностей.

 

В каждой технике есть свои ограничения и нельзя сказать об однозначном преимуществе одной из них.

Впрочем, в качестве очевидного, продолжая сравнение оригами с набором «Волшебные грани», мы можем отметить, что, в случае с оригами, за счёт множественных складок, затруднена работа с плотной бумагой. Правда, техника оригами не требует использования в работе клея и, следовательно, не ставит нас перед сложностью в выборе последнего. Но, с другой стороны, оригами предполагает самостоятельный поиск подходящей бумаги, а также выбор схем, освоение наиболее сложных и интересных из которых потребует значительного времени и определенных навыков.

Набор «Волшебные грани» выполнен на глянцевом картоне с высоким качеством цветной печати. Контуры развёрток-деталей частично прорезаны и легко отделяются при простом надавливании на них пальцами. Всем материалам для самостоятельной сборки предпослана иллюстрированная инструкция и исторический экскурс с упоминанием любопытных сведений об открытии той или иной фигуры многогранника и о причастных к данному открытию ученых-математиках. Доходчиво и наглядно!

схема сборки многогранников  

 

Отсюда напрашивается вывод, что из набора «Волшебные грани», подающего информацию в систематизированном виде, может быть извлечён больший познавательный эффект. Мы имеем дело с отличным средством воспитания пространственного мышления, способным одновременно укрепить отношения с ребенком при вашем совместном творческом освоении предлагаемого материала!

 

Автор текста: Ивченко А.В.

 

делаем поделку в технике оригами

Геометрические фигуры из бумаги должен научиться делать каждый! Ведь никогда не знаешь, какие знания тебе могут пригодиться в жизни. В последнее время техника оригами набирает широкую популярность среди детей и взрослых. Но перед тем как делать разнообразные поделки (животных, птиц, растений, маленьких домиков), нужно начать с простых геометрических фигур. Такие изделия подойдут для школьников для хорошего визуального представления разных фигур.

Мастерим куб

Итак, для сегодняшнего мастер-класса нам пригодится бумага, схемы, клей, ножницы, линейки и немножечко терпения.

Куб — самая простая фигура для оригами, простой многогранник, в котором каждая грань является квадратом. Схему для создания развертки можно распечатать на принтере, либо начертить самим. Для этого выбрать размеры граней. Ширина листа бумаги должна быть не менее 3 сторон одного квадрата, а длина не более 5 сторон. Начертить в длину листа четыре квадрата, которые станут боковыми сторонами куба. Рисовать строго на одной линии, вплотную. Над и под одним квадратом нарисовать по одному квадрату. Дорисовать полоски для склеивания, благодаря которым грани будут соединяться между собой. Наш куб уже практически готов!

Далее тонким слоем клея равномерно размазать по местам соединения. Склеить эти поверхности и закрепить на некоторое время с помощью скрепки. Клей будет схватываться около 30-40 минут. Таким образом склеить все грани.

Поделка посложнее

Конус делается немного сложнее. Для начала нарисовать циркулем окружность. Вырезать сектор (часть кружка, ограниченная дугой окружности и двумя радиусами) из этой окружности. Острота конца конуса зависит от вырезанной части большого сектора.

Склеить боковую поверхность конуса. Далее измерить диаметр основания конуса. Циркулем нарисовать окружность на листе бумаги. Затем дорисовать треугольнички для склеивания основы с боковой поверхности. Вырезать. После приклеить основание к боковой поверхности. Поделка готова!

Сложный параллелепипед

Параллелепипед — сложная фигура многогранник, у которого 6 граней и каждая из них параллелограмм.

Чтобы сделать параллелепипед техникой оригами, нужно начертить основание — параллелограмм любого размера. С каждой его стороны нарисовать боковые стороны — тоже параллелограммы. Далее от любой из боковых сторон дорисовать второе основание. Добавить места для склеивания. Параллелепипед может быть прямоугольным, если все стороны имеют прямые углы. Затем вырезать развертку и склеить. Готово!

Пирамида-оригами

Пришло время сделать пирамиду из бумаги. Это многогранник, основание которого — многоугольник, а другие грани — треугольники с общей вершиной.

Для начала нужно выбрать размеры пирамиды и количество граней. Далее нарисовать многогранник — он будет основанием. Смотря на количество граней, это может быть также треугольник, квадрат, пятиугольник.

От одной из сторон нашего многогранника нарисовать треугольник, который будет боковой стороной. Затем нарисовать еще треугольник, чтобы одна его сторона была общей с первым треугольником. Нарисовать их столько, сколько сторон в пирамиде. Далее дорисовать полоски для склеивания в необходимых местах. Вырезать и склеить фигуру. Пирамида готова!

Бумажный цилиндр

Цилиндр — это геометрическая фигура, ограниченная цилиндрической поверхностью и двумя параллельными плоскостями, которые ее пересекают.

Нарисовать прямоугольник на бумаге, в которой ширина — высота цилиндра, а длина — диаметр. Любители геометрии знают, что отношение длины прямоугольника к диаметру определяется формулой: L=nD, где L — длина прямоугольника, а D — диаметр цилиндра. С помощью этого вычисления узнать длину прямоугольника, которого будем рисовать на бумаге. Дорисовать маленькие треугольнички для склеивания деталей.

Затем нарисовать на бумаге два круга, диаметром как цилиндр. Это будет верхнее и нижнее основания цилиндра. Далее вырезать все детали. Склеить боковую поверхность цилиндра из прямоугольника. Дать детали высохнуть и приклеить к нему нижнее основание. Снова подождать, пока высохнет, и приклеить верхнюю основу. Готово!

Видео по теме статьи

как сделать додекаэдр из бумаги ✅ igrad.su

Оригами додекаэдр

Одной из простейших бумажных кусудам считается додекаэдр-оригами. Но это не значит, что он выглядит неэффектно, особенно когда речь идёт о звёздчатой разновидности. Декоративный многогранник, подобно другим своим родственникам – кусудамам, отлично подходит для праздничного украшения помещений или в качестве оригинального подарка. Мини-додекаэдры можно использовать как модные украшения, сделав из них серьги или кулон.

Ажурная модель

Существует несколько типов оригами-додекаэдров, но сделать эту прозрачную конструкцию из бумажных модулей проще всего. Хорошее задание для детей, желающих познакомиться с азами пространственной геометрии и взрослых, ищущих эффективное средство для снятия стресса. Желательно использовать для игрушки бумагу ками с рисунком, она придаст особый шарм и колорит.

Пошаговая инструкция:

  1. Для создания кусудамы понадобится 30 одинаковых модулей. Их складывают из прямоугольников, имеющих соотношение сторон 3:4. Например, размером 6х8 см, 9х12 см и так далее. Можно брать как одно-, так и двухсторонние листы.
  2. Складываем каждый прямоугольник пополам вдоль длинной стороны. После чего делаем Z-образный сгиб.
  3. Располагаем получившуюся полоску длинной стороной к себе. Загибаем правый нижний угол вверх. Переворачиваем заготовку на 180°. И повторяем действие для правого нижнего угла (другого).
  4. Складываем фигуру по диагонали, как показано на рис 4.
  5. Модули для додекаэдра-кусудамы готовы.

Остаётся соединить их в пространственную композицию. Для этого короткую часть одного модуля вставляем к «карман» длинной части другого. И располагаем так, чтобы внутренние углы и грани обоих элементов совпали.

Аналогичный образом добавляем третий модуль, соединяя его с предыдущими двумя и формируя устойчивый конструктивный узел.

Продолжаем крепить детали друг к другу, пока не получится объёмная фигура.

За счёт необычной бумаги с принтом, получается стильный предмет декора. Чтобы кусудама не распадалась, лучше соединить узловые элементы с помощью клея.

Подробная сборка ажурного додекаэдра представлена и в видео-МК:

Кусудама из правильных пятиугольников

Схема сборки додекаэдра-оригами из пентагонов – равносторонних пятиугольников, разработана американским дизайнером Дэвидом Брилом. Для модулей он использует 12 листов формата А6, то есть 10,5х14,8 см.

Пошаговая инструкция:

  1. Исходный прямоугольник складываем пополам в продольном и поперечном направлении, намечая серединные оси.
  2. Правый верхний и левый нижний угол сгибаем к центру. Получаем своего рода полуконверт.
  3. Аналогично складываем противоположные углы.
  4. Пятиугольную заготовку, «закрываем» сверху вниз «долиной».
  5. Верхний угол опускаем вниз и возвращаем обратно. На месте пересечения получившейся линии с вертикальной осью фигуры, образуется точка. К ней поочерёдно сгибаем внешние углы.
  6. Модуль-пентагон готов. Последние два сгиба раскрываем – это будут детали крепления элементов между собой.
  7. Боковые «ушки» одной детали вставляем в «карманы» другой. Места соединения для надёжности фиксируем клеем.
  8. Продолжаем сборку, пока не используем все 12 модулей.

Из подобных додекаэдров часто делают настольные календари. На каждой грани как раз размещается по месяцу. Соответствующие распечатки с числами и днями недели, можно скачать из интернета и наклеить на стенки модели. Получится не только красиво, но и практично.

Додекаэдр-звезда

Правильные звёздчатые многогранники относятся к самым красивым геометрическим фигурам. С момента своего открытия в XVI веке, они считались символом совершенства Вселенной. Малый звёздчатый додекаэдр впервые построил немецкий астроном и математик Иоганн Кеплер – создатель знаменитой теории о строении Солнечной системы. Многогранник имеет собственное имя: Арур Кэли, в честь английского учёного, сделавшего огромный вклад в развитие линейной алгебры.

Малый звёздчатый додекаэдр-оригами представляет собой фигуру из 12 граней-пентаграмм, с пятью пентаграммами, сходящимися к вершинам. Он состоит из 30 модулей, которые складываются из квадратов, размером 8х8 см. Лучше всего использовать профессиональную бумагу-оригами, которая позволит создавать чёткие грани и жёсткие узлы, не позволяющие конструкции распадаться или деформироваться.

Интересные факты о додекаэдре

Правильные многогранники с древних времен восхищали человечество и служили прообразом мирового устройства. Как оказалось, подобные представления небезосновательны. В 2003 году, анализируя данные исследовательского аппарата WMAP, запущенного NASA для изучения фоновых космических излучений, учёные выдвинули гипотезу о додекаэдрическом строении Вселенной по принципу сферы Пуанкаре.

Нечто подобное предполагал и живший в V в. до н. э. древнегреческий философ Платон. В своём учении о классических стихиях, он назвал додекаэдр «образцом божественного устройства Космоса». Вообще же все пять известных правильных многогранников до сих пор называют Платоновыми телами, по имени мыслителя, впервые выстроившего с их помощью чёткую картину мироздания.

Пентагон, лежащий в основе додекаэдра, построен на принципах «золотого сечения». Эта пропорция, которую древние греки считали «божественной» часто встречается в природе. Интересно, что соотношения «золотого сечения» присущи лишь додекаэдру и икосаэдру, у трёх других Платоновых тел его нет.

Игрушки древних римлян

На территориях Европы, некогда принадлежавших Римской империи, до сих пор находят загадочные бронзовые фигурки в форме додекаэдра. Предметы пустотелые, с круглыми отверстиями на каждой стороне и шариками, обозначающими вершины. Учёные пока не смогли однозначно определить функцию этих объектов. Первоначально считалось, что это своеобразные игрушки, однако позднее их отнесли к предметам культа, символизирующим устройство Вселенной. Или Земли, согласно теории, последовательно выдвигаемой с XIX века мировыми физиками, в том числе и российскими.

Впервые о том, что наша планета представляет собой кристалл додекаэдрической формы, заговорили французский математик Пуанкаре и геолог-исследователь де Бемон. Они утверждали, что земная кора, словно футбольный мяч, состоит из 12 правильных пятиугольников, в местах соединения которых, располагаются аномальные зоны и планетарные силовые поля.

В 1920-х годах идею французских коллег подхватил русский физик Степан Кислицын. Он пошёл ещё дальше, заявив, что планета не остаётся в стабильном состоянии, она растёт, из додекаэдра постепенно трансформируясь в икосаэдр. Учёный разработал модели подобных изменений, обозначив узлы гигантской кристаллической сетки, где, по его мнению, располагались месторождения полезных ископаемых: угля, нефти, газа и так далее. В 1928 году Кислицын, опираясь на свои исследования, указал на поверхности земного шара 12 алмазоносных центров, из которых 7 к настоящему времени находятся в активной разработке.

Идеи кристаллического строения планеты продолжают развиваться в XXI веке. Согласно последней гипотезе, подобная структура свойственна всем живым организмам, не только космическим телам, но и человеку. Тем интереснее будет собирать додекаэдр-оригами, чувствуя свою сопричастность к великим тайнам Вселенной.

Мастер-класс Фото-додекаэдр «Как я провел лето»

Додекаэдром называется правильный многогранник, составленный из двенадцати правильных пятиугольников. Правильные многогранники всегда привлекали людей своей красотой, органичностью и необыкновенным совершенством форм.

Как сделать правильный додекаэдр своими руками.

Сегодня конструкция данной фигуры нашла свое отображение во многих вариантах художественного творчества, архитектуре и строительстве. Народные умельцы изготавливают из цветной или белой бумаги необыкновенные по красоте оригами в виде ажурных додекаэдров, а из картона делают оригинальные и прочее). В продаже можно приобрести уже готовые наборы, содержащие все необходимое для изготовления сувениров, но наиболее интересно произвести весь процесс работы своими руками, начиная от построения отдельных деталей и заканчивая сборкой готовой конструкции.

Материалы и инструменты:

Для того, чтобы сделать правильный додекаэдр из картона, необходим собственно сам материал и подручные средства: циркуль, ножницы, карандаш, ластик, линейка, клей, плотная бумага формата А3, кусок картона 15*15см, фото, всевозможные картинки, цветная бумага.

Хорошо иметь тупой нож или какое-либо приспособление для загибания припусков, но если их нет, то вполне подойдет металлическая линейка или те же ножницы.

Шаг 1. Делаем правильный додекаэдр

Самый первый этап в изготовлении – построение пятиугольника нужного размера. Для этого берем кусок картона и циркуль. Радиус нашего круга 5,5 см. Должен получиться вот такой элемент. Он и станет основой фигуры. Далее конструируете развертку додекаэдра с учетом припусков на склеивание.

Шаг 3. Далее по линиям сгибаем припуски.

Шаг 4. Переходим к декорированию нашего додекаэдра.

Берем фото (в нашем случае формат 9*13) и по шаблону вырезаем многоугольники. Недостающие части (треугольники) вырезаем из цветной бумаги. И все это приклеиваем на стороны додекаэдра.

С помощью этой идей можно отразить и другие события (отпуск, 1 сентября, день рождения и др.) в жизни детей и не только 🙂

Такой «кубик» может стать оригинальным подарком своим родным и близким.

Оригами: как сделать додекаэдр из бумаги

Додекаэдр — это многогранник, состоящий из 12 одинаковых пятиугольников. Это базовая фигура для множества поделок: от настольных календарей до ажурных подвесных фонариков.

Можно построить пятиугольник самостоятельно — это несложно и гарантирует высокую точность рисунка. Для построения правильного пятиугольника понадобится циркуль и линейка. Нарисуйте круг необходимого размера. Проведите в любом месте радиус. К нему перпендикулярно проведите другой радиус. Затем один из радиусов разделите на две равные части. Каждая половинка будет радиусом другой, маленькой окружности, которая выполнит роль вспомогательной. Затем соедините центр этой вспомогательной окружности с тем местом, где основную окружность пересекает другой радиус (допустим, в точке А). Полученная линия пересечет вспомогательную окружность в определенной точке — В. Расстояние АВ и есть одна десятая часть окружности. Именно это расстояние циркулем отметьте на основной окружности, а затем соедините прямыми линиями эти точки через одну — правильный пятиугольник готов!

Есть и другие методы. Например, пятиугольник можно построить с помощью транспортира, но точности он не гарантирует. Наиболее легий способ — взять готовую схему, распечатать ее и по этой «выкройке» уже мастерить из подходящей бумаги поделку. Но этот способ, несмотря на простоту, подходит не всегда — ведь иногда нужно сделать додекаэдр какого-то конкретного размера. Можно увеличить один пятиугольник до нужного масштаба и распечатать только его, затем построить фигуру по схеме ниже.

Но «выкройка» — это еще не готовая поделка. Как сделать додекаэдр из бумаги? Для этого понадобятся:

1. Бумага, подходящая по плотности. Она не должна быть слишком тонкой или же слишком толстой — желательно 220 г/м², именно такой плотностью обладает картон, который продают в детских наборах. Хотя из толстого картона вполне можно создавать объемные фигуры, нужно только предварительно обработать все сгибы — слегка надрезать или хорошо продавить, чтобы они хорошо и ровно сгибались.

2. Ножницы, карандаш, клей, вязальная спица или канцелярский нож

Советы по изготовлению додекаэдра

Бумагу в местах сгибов желательно слегка продавить спицей, тупой стороной канцелярского ножа или чем-то острым, но не режущим. Аккуратные ровные сгибы — половина успеха.

Если клея под рукой нет, додекаэдр можно собрать, как конструктор, сделав надрезы по сгибам, а затем просто вставив стороны одна в другую.

Если вы собираете додекаэдр в модульной технике (инструкция ниже), то места соединений желательно проклеивать или закреплять скрепками, поскольку конструкция станет устойчивой только после закрепления последнего модуля.

Додекаэдр в технике оригами

Модуль оригами — отличная основа для додекаэдра. Как сделать додекаэдр из бумаги в модульной технике? Понадобится 30 прямоугольных или квадратных листов бумаги. Каждый из листочков складывается пополам, затем каждую половинку нужно отогнуть в противоположную сторону — получится «гармошка» в четыре сложения. Иногда, если лист не квадратный, делают «гармошку» в три сложения. В итоге у вас в руках узкая промоугольная полоска. Затем с каждой стороны прямоугольника по узкой стороне нужно отогнуть уголок. Уголки складываются в одну сторону — это будущие крепления, которые будут заправляться в «гармошку». Затем согните модуль вовнутрь наискосок по диагонали от маленьких боковых уголков. Таким образом, один модуль для оригами додекаэдра — трехмерный, он включает два ребра будущей фигуры и уголки. Когда все модули готовы, можно начинать сборку.

Сборка начинается с одного узла, для которого необходимо взять три модуля. На рисунке ниже это голубой, розовый и желтый модули оригами. Схемы сборки достаточно просты, и с такими фигурами легко справляются даже начинающие.

Какие поделки можно сделать на основе додекаэдра?

Каждая сторона додекаэдра из бумаги — это плоский пятиугольник, который сам по себе может являться основой для самых разных и причудливых форм. Например, на фото ниже пятиугольник заменен пятиконечнй звездой. Ребра в такой фигуре отсутствуют, хотя предполагаются. Как сделать додекаэдр из бумаги в виде звезды? Замените в развертке, представленной выше, каждый пятиугольник необходимой пятиконечной фигурой и соедините их не по ребрам, а по вершинам.

На этом фото представлен звездчатый додекаэдр. В основе каждого «луча» лежит все тот же пятиугольник.

Вместо пятиугольных пирамид может быть выполнена любая объемная фигура.

На фото ниже в качестве пятиугольников выступают более сложные модули оригами, схемы которых заинтересовавшиеся этой техникой смогут найти в специальной литературе.

В любом случае освоение даже простейшей схемы сборки додекаэдра уже даст огромные возможности для творчества и поиска своих собственных вариантов.

Источники:

http://all-origami.ru/origami-dodekaedr/
http://sibmama.ru/dodekaedr.htm
http://fb.ru/article/75832/origami-kak-sdelat-dodekaedr-iz-bumagi

Презентация (исследовательская работа) по математике на тему «Правильные многогранники в оригами» (5 класс)

Инфоурок › Математика ›Презентации›Презентация (исследовательская работа) по математике на тему «Правильные многогранники в оригами» (5 класс)

Описание презентации по отдельным слайдам:

1 слайд Правильные многогранники в оригами Автор: Нагишев Илья, учащийся 5а класса Ру Описание слайда:

Правильные многогранники в оригами Автор: Нагишев Илья, учащийся 5а класса Руководитель: Лисаченко Елена Ивановна

2 слайд Цель проекта: познакомиться с правильными многогранниками Задачи проекта: Изу Описание слайда:

Цель проекта: познакомиться с правильными многогранниками Задачи проекта: Изучить, что такое многогранники Узнать, какие бывают виды многогранников Научиться складывать многогранники из бумаги

3 слайд Актуальность проекта Модели многогранников могут оказать помощь в развитии пр Описание слайда:

Актуальность проекта Модели многогранников могут оказать помощь в развитии пространственного мышления, а значит, помощь в изучении геометрии Хорошо сложенные многогранники могут украсить не только школьный кабинет, но и любое помещение

4 слайд Актуальность проекта Модели многогранников могут оказать помощь в развитии пр Описание слайда: 5 слайд Названия многогранников пришли из Древней Греции и в них указывается число гр Описание слайда:

Названия многогранников пришли из Древней Греции и в них указывается число граней: «эдра» — грань «тетра» — 4 «гекса» — 6 «окта» — 8 «икоса» — 20 «дедека» — 12

6 слайд Правильные многогранники иногда называют платоновыми телами, поскольку они за Описание слайда:

Правильные многогранники иногда называют платоновыми телами, поскольку они занимают видное место в философской картине мира, разработанной великим мыслителем Древней Греции Платоном Платон (ок. 428 – ок. 348 до н.э.)

7 слайд Правильные многогранники в философской картине мира Платона Платон считал, чт Описание слайда:

Правильные многогранники в философской картине мира Платона Платон считал, что мир строится из четырёх «стихий» — огня, земли, воздуха и воды, а атомы этих «стихий» имеют форму четырёх правильных многогранников. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у пламени октаэдр – олицетворял воздух куб – самая устойчивая из фигур – олицетворял землю икосаэдр – как самый обтекаемый – олицетворял воду додекаэдр символизировал весь мир

8 слайд Скелет одноклеточного организма феодарии по форме напоминает икосаэдр Из все Описание слайда:

Скелет одноклеточного организма феодарии по форме напоминает икосаэдр Из всех многогранников с тем же числом граней именно икосаэдр имеет наибольший объём при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление водной толщи.

9 слайд Кристаллы поваренной соли имеют форму куба Описание слайда:

Кристаллы поваренной соли имеют форму куба

10 слайд Форму октаэдра принимают кристаллы алмаза, куприта,а также алюминиево – калие Описание слайда:

Форму октаэдра принимают кристаллы алмаза, куприта,а также алюминиево – калиевые кварцы, используемые при производстве алюминия Куприт

11 слайд тетраэдр Описание слайда:

тетраэдр

12 слайд октаэдр Описание слайда:

октаэдр

13 слайд икосаэдр Описание слайда:

икосаэдр

икосаэдр

Курс профессиональной переподготовки

Учитель математики

икосаэдр

Курс повышения квалификации

икосаэдр

Курс повышения квалификации

Найдите материал к любому уроку,
указав свой предмет (категорию), класс, учебник и тему:

Выберите категорию: Все категорииАлгебраАнглийский языкАстрономияБиологияВсеобщая историяГеографияГеометрияДиректору, завучуДоп. образованиеДошкольное образованиеЕстествознаниеИЗО, МХКИностранные языкиИнформатикаИстория РоссииКлассному руководителюКоррекционное обучениеЛитератураЛитературное чтениеЛогопедия, ДефектологияМатематикаМузыкаНачальные классыНемецкий языкОБЖОбществознаниеОкружающий мирПриродоведениеРелигиоведениеРодная литератураРодной языкРусский языкСоциальному педагогуТехнологияУкраинский языкФизикаФизическая культураФилософияФранцузский языкХимияЧерчениеШкольному психологуЭкологияДругое

Выберите класс: Все классыДошкольники1 класс2 класс3 класс4 класс5 класс6 класс7 класс8 класс9 класс10 класс11 класс

Выберите учебник: Все учебники

Выберите тему: Все темы

также Вы можете выбрать тип материала:

loading

Общая информация

Номер материала: ДA-021559

Похожие материалы

Вам будут интересны эти курсы:

Оставьте свой комментарий

Отправить ответ

avatar
  Подписаться  
Уведомление о