Изготовление телескопа в домашних условиях

Времена, когда открытие в науке мог сделать любой желающий, почти полностью остались в прошлом. Всё, что может открыть любитель в химии, физике, биологии — давно уже известно, переписано и посчитано. Астрономия — исключение из этого правила. Ведь это наука о космосе, пространстве неописуемо огромном, в котором невозможно изучить всё, и даже недалеко от Земли ещё существуют неоткрытые объекты.

Однако, для того чтобы заниматься астрономией, необходим телескоп — дорогой оптический прибор. Самодельный телескоп своими руками — простая или сложная задача?

Может быть, поможет бинокль?

Начинающему астроному, который только-только начинает присматриваться к звёздному небу, рановато делать телескоп своими руками. Схема для него может показаться слишком сложной. На первых порах можно обойтись и обыкновенным биноклем.

Это не такой уж и несерьёзный прибор, как может показаться, и есть астрономы, которые продолжают пользоваться биноклями, даже став знаменитыми: так, японский астроном Хиякутаке, первооткрыватель кометы, названной его именем, прославился именно своим пристрастием к мощным биноклям.

Для первых шагов начинающего астронома — для того, чтобы понять «моё это, или не моё» — подойдет любой мощный морской бинокль. Чем больше диаметр объективов, тем лучше. В бинокль можно наблюдать Луну (в достаточно внушительных подробностях), разглядеть диски ближних планет, таких, как Венера, Марс или Юпитер, рассмотреть кометы и двойные звёзды.

Нет, всё-таки телескоп!

Если Вы загорелись астрономией всерьёз и всё-таки хотите сделать телескоп своими руками, схема, которую вы выберете, может принадлежать к одной из двух основных категорий: рефракторы (в них используются только линзы) и рефлекторы (используются линзы и зеркала).

Для начинающих рекомендуются рефракторы: это менее мощные, но более простые в изготовлении телескопы. Потом, когда Вы наберетесь опыта в изготовлении рефракторов, сможете попробовать собрать рефлектор — мощный телескоп своими руками.

Чем отличается мощный телескоп?

Что за глупый вопрос — спросите вы. Конечно — увеличением! И будете неправы. Дело в том, что не все небесные тела в принципе возможно увеличить. Например, звёзды вы не увеличите никак: они расположены на расстоянии многих парсек, и с такого расстояния превращаются практически в точки. Никакого приближения не хватит, чтобы разглядеть диск далёкой звезды. «Увеличить» можно только объекты Солнечной системы.

А звёзды, телескоп, прежде всего, делает ярче. И за это его свойство отвечает его первая по важности характеристика — диаметр объектива. Во сколько раз объектив шире, чем зрачок человеческого глаза — во столько раз ярче становятся все светила. Если Вы хотите сделать мощный телескоп своими руками — Вам придется подыскивать, прежде всего, очень большую в диаметре линзу под объектив.

Простейшая схема телескопа-рефрактора

В наиболее простом своём виде телескоп-рефрактор состоит из двух выпуклых (увеличивающих) линз. Первая — большая, направленная на небо — называется объективом, а вторая — маленькая, в которую смотрит астроном, называется окуляром. Самодельный телескоп своими руками следует делать именно по этой схеме, если для Вас это первый опыт.

Объектив телескопа должен иметь оптическую силу в одну диоптрию и как можно больший диаметр. Найти подобную линзу можно, например, в мастерской по изготовлению очков, где из них вырезают стёклышки для очков различной формы. Лучше, если линза будет двояковыпуклой. Если не найдётся двояковыпуклой — можно использовать пару плосковыпуклых линз по полдиоптрии, расположенных одна за другой, выпуклостями в разные стороны, на расстоянии 3 сантиметра друг от друга.

В качестве же окуляра лучше всего сойдёт любая сильная увеличительная линза, в идеале — лупа в окуляре на ручке, какие выпускались раньше. Сойдёт и окуляр от любого оптического прибора заводского изготовления (бинокля, геодезического прибора).

Чтобы узнать, какое увеличение будет давать телескоп, замерьте фокусное расстояние окуляра в сантиметрах. Затем поделите 100 см (фокусное расстояние линзы в 1 диоптрию, то есть объектива) на эту цифру, и получите искомое увеличение.

Закрепите линзы в любой прочной трубе (сойдёт картонная, промазанная клеем и покрашенная изнутри самой чёрной краской, что сможете найти). Окуляр должен иметь возможность скользить вперёд-назад в пределах нескольких сантиметров; это нужно для наведения резкости.

Закрепить телескоп следует в деревянном штативе так называемой монтировки Добсона. Чертёж её легко можно найти в любом поисковике. Это самая простая в изготовлении и в то же время надёжная монтировка для телескопа, почти все телескопы-самоделки используют именно её.

Телескоп своими руками / Все про оптику

Телескоп из очковых стекол


Что нужно для постройки телескопа из очковых стекол. Простейший телескоп-рефрактор.

Для постройки телескопа потребуется очковое стекло силой в 1 диоптрию (фокусным расстоянием 1 м), которое представляет собой мениск (выпукло-вогнутую линзу) диаметром 60 — 80 мм, и может быть приобретено в магазинах по продаже и изготовлению очков. Необходимо обратить внимание на то, что линза должна иметь положительную оптическую силу, т. е. быть «собирающей», в отличие от «рассеивающих» стекол, которые не могут построить действительное изображение объекта. Что такое положительная линза, большинство из нас знает, так как все мы пользовались в детстве увеличительным стеклом для выжигания. При этом лучи Солнца фокусируются на расстоянии от линзы, равном фокусному. Очковое стекло будет служить объективом телескопа. Такой телескоп называется рефрактором от слова «рефракция», т. е. «преломление». В объективе телескопа-рефрактора происходит преломление лучей света, пришедших от объекта наблюдения, в результате чего они собираются в фокальной плоскости, где рассматриваются наблюдателем в окуляр, т. е. в лупу той или иной конструкции. В нашем случае окуляром может служить простое увеличительное стекло фокусным расстоянием 20 — 70 мм, объектив от фотоаппарата, окуляр от бинокля, зрительной трубы, микроскопа и т. д.

Кроме объектива и окуляра потребуются несколько листов ватмана, клей (ПВА, столярный, эпоксидный), небольшое количество толстого и тонкого картона. Для изготовления штатива нужны будут рейки сечением примерно 25х15 мм, 5 мм фанера, обрезки дюймовой доски, несколько мелких шурупов, три длинных и один короткий болты М6 с гайками-барашками, клей.

Если не удастся достать линзу в 1 диоптрию, можно использовать другую, учитывая при этом, что фокусное расстояние объектива будет равно:

F (м) =1 м / оптическая сила в диоптриях.

Например, для линзы в 0,75 диоптрии:

F = 1 м / 0,75 = 1,33 м.

Нужно только учитывать, что слишком длинный телескоп будет неудобен в обращении, а короткофокусный объектив будет давать изображение неудовлетворительного качества. Из этих соображений целесообразно применить очковое стекло фокусом 0,6 — 1,5 м.

Полезный совет: Очковые стекла обычно имеют метку в виде точки около центра, которая указывает оптический центр линзы. Он может значительно отличаться от геометрического центра, это учитывают при изготовлении очков (при обтачивании стекла). Желательно выбрать стекло, в котором оптический центр отличается от геометрического на небольшую величину.


С чего начать? Оправа, труба, окулярный узел.

Начинать лучше всего с изготовления оправы объектива (см. черт., поз. 1), диаметр которой, а, следовательно, и диаметр трубы, будет зависеть от размера приобретенного очкового стекла. Оправой будет служить трубка, склеенная из ватмана в несколько слоев. Внутренний диаметр оправы должен быть равен диаметру нашей линзы, а длина — 70 — 80 мм. Линза фиксируется двумя бумажными или картонными кольцами, которые плотно вставляются внутрь оправы, зажимая с двух сторон стекло. Оправа должна быть достаточно жесткой.

Затем необходимо склеить из нескольких слоев ватмана главную трубу телескопа (поз. 2). Это можно сделать, наматывая листы на уже готовую оправу и обильно промазывая клеем внутреннюю поверхность бумаги. При этом нужно следить, чтобы бумага не перекашивалась. Длина трубы должна быть немного (на 150 — 200 мм) меньше фокусного расстояния объектива. Подвижная трубка (поз. 3) служит для фокусировки, т. е. для совмещения фокальных плоскостей объектива и окуляра. Она должна легко двигаться «на трении», но не болтаться. Ее склеиваем из ватмана аналогично главной трубе нашего телескопа.

Оправу окуляра, конструкция которой будет зависеть от того, что мы применим для этой цели, можно вставить непосредственно в подвижную трубку, но лучше, особенно если диаметр окуляра мал, сделать несложный фокусировочный узел. Основой узла будет служить кольцо из фанеры (выпилить лобзиком и просверлить отверстие) или двух — трех слоев толстого картона. Узел работает «на трении», и конструкция его ясна из чертежа (поз. 4). Поверхность неподвижной трубки окулярного узла можно оклеить бархатом или сукном, для снижения трения, подвижную можно подобрать или выточить металлическую, а можно склеить из нескольких слоев не очень толстой, но плотной, гладкой бумаги. Ей необходимо придать достаточную жесткость.

Передвижением подвижной трубки телескопа грубо совмещаются фокальные плоскости объектива и окуляра (при этом одну и ту же трубу можно использовать с разными объективами), а окулярный узел позволяет добиться точной фокусировки.


Испытание телескопа. Его основные характеристики.

Теперь несколько слов об испытании и настройке телескопа, его основных характеристиках. Прежде всего, скажу об увеличении, с которым мы будем работать. Увеличение телескопа равно фокусному расстоянию объектива, деленному на фокусное расстояние окуляра. Из этого видно, что, применяя разные окуляры, мы можем получать с одним и тем же объективом разные увеличения. Например, для окуляра с фокусным расстоянием 50 мм (нормальный объектив от фотоаппарата):

1000 мм / 50 мм = 20 крат,

а для окуляра от микроскопа с фокусным расстоянием 10 мм:

1000 мм / 10 мм = 100 крат.

Может показаться, что, применяя длиннофокусные стекла и короткофокусные окуляры, можно добиться очень большого увеличения, однако, поэкспериментировав с телескопом из очковых стекол, мы очень скоро убедимся, что это не так. Несовершенство нашего объектива накладывает существенные ограничения. На практике мы сможем использовать построенный инструмент с 20 — 50 кратным увеличением. Этого достаточно для того, чтобы увидеть многое из того, что украшает ночное небо, но недоступно невооруженному глазу, например, яркие туманности, кольцо Сатурна, диск и спутники Юпитера, не говоря уже о захватывающих панорамах Луны.

Итак, наш телескоп готов, клей просох, внутренние поверхности трубы и оправ зачернены тушью, и можно приступить к первым испытаниям. Совместив фокальные плоскости объектива и окуляра, и оперев трубу для устойчивости о подоконник, раму окна или другой предмет, попытаемся «навести на резкость» перемещением фокусировочной трубки с окуляром. Скорее всего, даже при наилучшей фокусировке изображение будет подернуто «дымкой». Это происходит потому, что только центральная часть очкового стекла строит неискаженное изображение. Для строительства телескопов-рефракторов с достаточно большими диаметрами применяют сложные объективы, в которых эти искажения, называемые аберрациями, исправляются. Ничего страшного, закрыв краевые части нашего объектива непрозрачным экраном, мы добьемся хорошего изображения. Такой экран называется диафрагмой (см. черт, поз. 5).Имеет смысл сделать несколько диафрагм — по числу окуляров, так как при малых увеличениях аберрации заметны меньше, а при больших — сильнее. Диафрагма изготовляется в виде кружка из картона с отверстием 10 — 30 мм посредине, красится в черный цвет и вставляется в оправу объектива перед очковым стеклом. При увеличениях 10 — 20 крат можно использовать 30мм диафрагму — это позволит увидеть больше слабых объектов (звезд и туманностей), при наблюдении Луны с увеличением 50 — 100 крат действующее отверстие объектива придется уменьшить до 15 — 10 мм. Во всех случаях увеличение и диаметр диафрагмы нужно будет определять опытным путем.

Здесь мы подошли к другому важнейшему параметру телескопа — диаметру объектива. Этот параметр является основным и определяет такие характеристики, как проницающую силу и разрешающую способность инструмента. Первая характеристика указывает на возможность телескопа показывать слабые объекты и выражается в звездных величинах. Вторая — на способность разделять близко расположенные звезды или детали на дисках планет и выражается в угловых величинах — в секундах и долях секунды дуги. Для примера можно сказать, что угловой размер видимого диска Луны составляет около 30 минут, а человеческий глаз обладает разрешающей способностью 1 — 2 минуты. Наш же телескоп может иметь разрешающую способность около 10 секунд дуги, т.е., по крайней мере, в 6 — 10 раз выше, чем невооруженный глаз. Проницающая сила инструмента пропорциональна квадрату диаметра объектива, и, если принять размер зрачка человеческого глаза равным 7 мм, а диаметр входного отверстия телескопа — 20 мм, то наш простейший рефрактор позволит нам наблюдать звезды и другие светила примерно в 8 раз более слабые, чем невооруженным глазом. Желающих более подробно ознакомиться с этими и другими понятиями геометрической и физической оптики, принципами работы и особенностями различных систем телескопов отсылаем к перечню литературы в конце этой статьи.
 
Наблюдения с телескопом.

Несмотря на все несовершенство конструкции, наш скромный телескоп наверняка доставит его владельцу немало увлекательных минут. С его помощью можно будет увидеть кратеры и другие детали рельефа на Луне, спутники Юпитера, кольцо Сатурна, Большую туманность Ориона, Туманность Андромеды, звездные скопления и множество слабых звезд. При помощи солнечного экрана можно будет наблюдать пятна на Солнце. Нужно при этом помнить:


БЕЗ СОЛНЕЧНОГО СВЕТОФИЛЬТРА СМОТРЕТЬ НА СОЛНЦЕ ОПАСНО!

Телескоп за пять минут своими руками

телескоп своими руками

Для того чтобы окунуться в мир звезд совсем не нужно покупать дорогостоящий телескоп. Такое приспособление можно изготовить своими руками, да и еще при этом потратить всего лишь пять минут.

Чтобы изготовить телескоп за пять минут своими руками посмотрите это видео

Для сотворения телескопа нам понадобится:
— Пустая пластиковая бутылка;
— Подарочная упаковка с коньяка;
— Ножницы;
— Канцелярский нож;
— Пробка с бутылки;
— Лупа;
— Линза часовщика;
— Изоляционная лента;

бутылка, нож, лупа, подарочная упаковка,

1. Бумажную тубу, соединяем с лупой, для этого подтачиваем крышку тубы под размер лупы и вставляем ее туда, это будет объектив нашего телескопа.

бумажная туба, лупа

2. Из пластиковой бутылки мы изготавливаем окуляр, для этого отрезаем ее дно.

пластиковая бутылка, ножницы

3. Изоляционной лентой перевязываем горлышко бутылки.

изолента, бутылка, горлышко

4. К горлышку присоединяем линзу часовщика, следим чтобы она плотно садилась на крышку, если линза болтается, нужно утолщать горлышко с помощью изоляционной ленты.

бутылка, линза часовщика, горлышко

5. Вставляем бутылку в тубу, она должна четко подходить под размер.

бутылка, тумба

6. Чтобы пластиковая бутылка зафиксировалась внутри подарочной тубы, посередине перевязываем ее изоляционной лентой.

бутылка, изоляционная лента

7. Стоит отметить, что такой телескоп, созданный своими руками будет показывать изображение вверх головой.
Ну, вот и все, теперь вы можете с легкостью подсматривать за соседями или смотреть на звезды, на солнце с такого телескопа смотреть не рекомендуется.

бутылка, изоляционная лента Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Как сделать телескоп PiKon своими руками на базе компьютера Raspberry Pi

Самодельный телескоп PiKon напечатан на 3Д-принтере и управляется компьютером Raspberry Pi. Дизайн предполагает замену окуляра в ньютоновом телескопе-рефлекторе на камеру Raspberry Pi (с демонтированной линзой) своими руками. Зеркало телескопа фокусирует изображение прямо на сенсор камеры, давая поле обзора примерно ¼ градуса (для сравнения, Луна занимает ½ градуса поля зрения человеческого глаза).

Первоначально PiKon был спроектирован для Фестиваля Разума, проводящегося в Университете Шеффилда, чтобы продемонстрировать, что может сделать дома ученый-любитель с помощью новейших доступных технологий, таких как 3Д принтер и компьютер Raspberry Pi. С тех пор телескоп был профинансирован с помощью краудфандинга, и стал частью проекта свободного аппаратного обеспечения.

Шаг 1: Загрузка макетных файлов для 3Д-принтера

Вы можете загрузить stl-файлы отсюда или из облачного хранилища DropBox.

Файлы

Шаг 2: Монтаж оправы главного зеркала

Не устанавливайте зеркало в оправу, пока весь зеркальный узел не будет собран. В основание зеркала вставляются три 8мм винта, затем на них надеваются пружинки, и уже потом надевается оправа зеркала. В оправе зеркала сделаны шестиугольные отверстия, в которые должны попасть винты. Оправа должна быть установлена так, чтобы шестиугольные отверстия смотрели в сторону, противоположную базе, и в них должны быть видны винты.

Шаг 3: Крепление главного зеркала к оправе

На оправу клеится двухсторонняя клеевая прокладка, лишние части нужно срезать острым ножом. На эту прокладку клеится зеркало, его обязательно нужно отцентровать и выверить с периметром оправы. Юстирование зеркала проводится с помощью трех винтов. Убедитесь, что расстояние между базой и оправой одинаково во всех трех точках крепления болтов. Для проверки можно использовать биту дрели.

Шаг 4: Крепление камеры на паука

Крепление «паук» удерживает камеру компьютера на оси телескопа и дает возможность немного перемещать ее по этой оси, чтобы фокусировать. Pi-камера установлена в рамку, к которой уже присоединена резиновая зубчатая рейка. Сначала нужно убрать с камеры линзу, чтобы открыть доступ к сенсору. Линза посажена на резьбу с герметиком, возможно придется приложить усилие, чтобы линза сдвинулась по резьбе. Камеру желательно держать в процессе снятия, как показано на картинке, снятую линзу можно выкинуть.

Во время снятия линзы от печатной платы камеры может отсоединиться шлейф, идущий на камеру, поэтому стоит проверить, подключен ли шлейф к плате, когда вы закончите с линзой.

После этого Pi-камеру нужно закрепить в рамке четырьмя 2мм винтами и гайками. Примечание: винты в комплекте могут быть короче, чем на фотографиях.

Шаг 5: Фокусировщик

Теперь собираем фокусировщик. Он состоит из шестерни верхнего вала, соединенной с резьбовым валом, и ручки фокусировки, соединенной с резьбовым валом с помощью двух квадратных гаек и обычной гайкой. Шестерню верхнего вала помещаем в центр паука, как на картинке. Потом проводим вал через отверстие в окружности паука в центр шестерни и фиксируем винтом под шестигранник. Зубчатая рейка камеры будет проходить в щель между шестерней и пластиком паука.

Сначала ход будет достаточно тугой, но после пары проходов сгладится. Очень важно, чтобы в этом узле детали были плотно подогнаны. Ручка фокусировки фиксируется на квадратных гайках и контргайкой сверху. На резьбовой вал наденьте квадратную гайку и поверните, постоянно проверяя, достаточно ли над ней длины вала для ручки и контргайки. После этого наденьте вторую квадратную гайку и законтрируйте обе гайки. Наденьте на резьбовой вал ручку фокусировщика, чтобы квадратные гайки попали в квадратную выемку с внутренней стороны ручки, и закрепите ручку контргайкой.

Шаг 6: Установка корпуса компьютера

Корпус компьютера крепится к пауку с помощью рамки и единственного самореза. В рамке компьютера сверлится 4 мм отверстие, открывающее доступ к саморезу. В готовых наборах напечатанных деталей на рамке нанесена метка в месте, где нужно просверлить отверстие. Для тех, кто будет печатать все детали дома, прилагаю файл с координатной сеткой.

Отверстие сверлится в периметре паука, сверлом 2,5 мм, в него будет врезаться саморез 3,5 мм. Отверстие должно быть расположено над одной из растяжек паука, чтобы кончик самореза не выпирал. Корпус компьютера Raspberry Pi прозрачный, состоит из двух частей. Шлейф от камеры проходит через колпак, прежде чем подключиться к разъему для CSI камеры на плате компьютера. После две части собираются вместе и вставляются в рамку.

Шаг 7: Заключительная сборка и монтаж штатива

Возможно, вы захотите покрыть внутреннюю поверхность трубы черной матовой краской.
Треножный станок монтируется на центре тяжести домашнего телескопа. Для этого нужно навесить на трубу телескопа узел главного зеркала и паука. Их можно временно зафиксировать с помощью тканевого скочта.
Затем сбалансируйте трубу с помощью пальцев или подручных предметов, чтобы определить ее центр тяжести. Поставьте метку на это месте. Теперь, с помощью крепления штатива, отметьте места, где нужно будет просверлить два отверстия под крепление.

Снимите зеркало и паука, прежде чем начать сверлить отверстия; оставьте достаточный зазор для гаек. Когда отверстия будут готовы, зафиксируйте крепление штатива с помощью винтов и гаек.

Можно опять навесить зеркало и паука на трубу, но пока не фиксируйте их окончательно. Нужно проверить работу телескопа, чтобы установить правильную ориентацию камеры, и только после этого можно установить паук на свое место.

Окончательная фиксация зеркала и паука происходит с помощью 3,5 мм саморезов. Отверстия под саморезы сверлятся 2,5 мм сверлом, через стенку трубы в боковую часть растяжек паука и базы зеркала. Повторюсь, не закрепляйте паука насовсем, пока не проведете испытание камеры, пусть пока держится на тканевом скотче.

Шаг 8: Настройка компьютера

Для использования Raspberry Pi вам понадобится источник питания, USB-клавиатура, HDMI-монитор и мышь для графического интерфейса. Если у вашего монитора вход VGA, можно воспользоваться переходником HDMI — VGA.

В компьютер Raspberry Pi встроена запрограммированная micro-SD карта. При включении компьютера на монитор выводится последовательность действий по настройке компьютера.

Рекомендованная ОС – Raspian. Захват изображения происходит набором команды, поэтому будет целесообразно загружать интерфейс командной строки во время начальной загрузки, чем загружать потом графический интерфейс пользователя (ГИП).

Синтаксис командной строки.
Полный перечень команд для камеры находится на сайте производителя.
Для захвата изображения используется следующая команда:
Raspistill –o test.jpeg –t 30000 –hf
«Raspistill –o test.jpeg» — эта часть команды означает, что изображение сохраняется в формате .jpeg, имя файла – test. По умолчанию на экране появляется превью изображения.

–t 30000 — означает время демонстрации превью прежде чем будет сделан снимок. Время измеряется в миллисекундах, таким образом в нашей команде указано время 30 секунд.

-hf – переворачивает изображение по горизонтали. Изображение на сенсоре зеркально перевернуто.

Шаг 9: Установка телескопа для наблюдений

Так как у телескопа PiKon нет окуляра, настройка изображения происходит на экране.
Сначала введите команду «Raspistill –o test.jpeg» для тестового фото, чтобы удостовериться, что камера присоединена корректно и все работает как надо.

Затем сфокусируйте телескоп на объекте наблюдения. Увеличив в команде временной период превью (-t), вы получите возможность настройки изображения.
Raspistill –o test.jpeg –t 120000 –hf

Когда вы настроите фокус, уберите тканевый скотч с паука и вращайте его в трубе, пока изображение не выправится по вертикали. Когда это произойдет, паука можно фиксировать саморезами.

Теперь вы готовы исследовать небо. Начать лучше с Луны, так вы познакомитесь с управлением телескопом. Сделанные вами изображения хранятся на Raspberry Pi, чтобы сбросить их на другой компьютер я использую аккаунт в приложении Dropbox от Raspberry Pi.

Отправить ответ

avatar
  Подписаться  
Уведомление о