cxema.org — Импульсный блок питания на IR2153

Блок питания построен по полу мостовой схеме на основе микросхемы IR2153. На выходе этого блока можно получить любое нужное вам напряжение, все зависит от параметров вторичной обмотки трансформатора.

Подробно рассмотрим схему импульсного блока питания.

Импульсный блок питания на IR2153, принципиальная схема

Мощность источника питания именно с такими компонентами около 150 ватт.

Сетевое переменное напряжение через предохранитель и термистор поступает на диодный выпрямитель.

Импульсный блок питания на IR2153, предохранитель Импульсный блок питания на IR2153, конденсаторы

После выпрямителя стоит электролитический конденсатор, который в момент включения блока в сеть будет заряжаться большим током, термистор как раз ограничивает этот ток. Конденсатор нужен с напряжением 400-450 Вольт. Далее  постоянное напряжение поступает на силовые ключи. Одновременно через ограничительный резистор и выпрямительный диод поступает питание на микросхему IR2153.

Импульсный блок питания на IR2153 Импульсный блок питания на IR2153, 6N60

Резистор нужен мощный, не менее 2-х ватт, лучше взять 5-и ваттный. Напряжение питания для микросхемы дополнительно сглаживается небольшим электролитическим конденсатором, емкостью от 100 до 470мкФ, желательно на 35 Вольт.  Микросхема начинает вырабатывать последовательность прямоугольных импульсов, частота которых зависят от номинала компонентов времязадающей цепи, в моем случае частота находиться в районе 45кГц.

На выходе установлен выпрямитель со средней точкой. Выпрямитель в виде диодной сборки в корпусе то-220. Если выходное напряжение планируется в пределах 40 вольт, то можно использовать диодные сборки  выпаянные из компьютерных блоков питания.

Импульсный блок питания на IR2153, детали Импульсный блок питания на IR2153, печатная плата

Конденсатор вольтодобавки, предназначен для корректного срабатывания верхнего полевого ключа, емкость зависит от того, какой транзистор использован, но в среднем 1мкФ хватит для большинства случаев.

Перед запуском нужно проверить работу генератора. Для этих целей от внешнего источника питания на указанные выводы микросхемы подается около 15-и вольт постоянного напряжения.
Далее проверяется наличие прямоугольных импульсов на затворе полевых ключей, импульсы должны быть полностью идентичными, одинаковой частоты и заполнения.

Первый запуск источника питания обязательно делается через страховочную лампу накаливания на 220 Вольт с мощностью около 40 ватт, будьте предельно осторожны, не дотрагивайтесь платы во время работы, после отключения блока от сети дождитесь несколько минут пока высоковольтный конденсатор не разрядится через соответствующий резистор.
Очень важно указать то, что эта схема не имеет защиты от коротких замыканий, поэтому любые короткие замыкания, даже кратковременные приведут к выходу из строя силовых ключей и микросхемы IR2153, так, что будьте аккуратны.

Импульсный блок питания на IR2153, резистор Импульсный блок питания на IR2153, собранная плата

Схема также лишена обратной связи по напряжению, так что выходное напряжение будет плавать в зависимости от перепадов сетевого напряжения. Многие скажут, кому нужен этот блок питания, если он такой нехороший. На самом деле блоки питания на IR2153 очень популярны, они просты, практически не требуют наладки, себестоимость маленькая и к тому если использовать соответствующий трансформатор, выпрямитель, транзисторы и входной электролит, с блока питания можно выкачивать до пол киловатта мощности, но и это не все, я делал вплоть до 1 киловатта, правда с дополнительным эмиттерным повторителем и прочими плюшками, включая защиту от коротких замыканий, перенапряжения и релейным  плавным пуском,  схема такого блока питания сейчас перед вами.

Печатная плата тут 

Схемы импульсных блоков питания на микросхемах IR2153


— Интересно, а что можно увидеть, если низе́нько пролететь над глухим бурятским селением тарбагатайского района, вооружившись комплексом радиолокационного наблюдения?
— Что, что? Узкораспахнутые глаза нескольких офонаревших финно-угров, а так же электромагнитную мешанину помех в полосе частот 1…100 МГц.
Железный конь пришёл на смену крестьянской лошадке! Энергосберегающие лампы, телевизоры, компьютеры, зарядные устройства и прочий хай-тек с импульсными источниками питания — на смену лампочке Ильича!
Вот и приходится бедолаге-радиолюбителю уживаться с разномастными ИБП, излучающими в эфир интенсивный высокочастотный шлак во всех КВ-диапазонах.
А что тут попишешь? Прогресс как-никак…, технологичность, блин…, массогабариты, мать их за ногу…

И чтобы не застрять на обочине инновационного пути, поклонимся и припадём к импульсным блокам питания и мы. А начнём с двуполярного импульсного источника для мощного усилителя мощности.

Что нужно правильному ИПБ для комфортного выполнения своих непосредственных обязанностей?

1. Мягкий, он же плавный, пуск при включении импульсного блока питания, предотвращающий превышение допустимых токов полупроводников от работы на фактически короткозамкнутую нагрузку, образующуюся вследствие мгновенного заряда ёмкостей выпрямителя.
Часто используемые для этих целей термисторы не так уж и хороши, в силу инерционной зависимости изменения сопротивления от температуры. Результат — кирдык блоку питания из-за того, что просто выключили и тут же включили БП тумблером.

2. Правильная и быстрая защита ИБП от токовых перегрузок и КЗ, полностью отключающая устройство от сети при возникновении нештатных ситуаций.
Распространённое шунтирование на землю точки питания микросхемы-драйвера, управляющего ключевыми транзисторами, может выручить далеко не во всех ситуациях. Слабым звеном здесь оказывается наличие электролитического конденсатора в цепи питания, приводящего к существенной задержке такого обесточивания микросхемы со всеми вытекающими невесёлыми последствиями.

3. Наличие входных и выходных LC-фильтров для предотвращения проникновения импульсных помех в сеть и нагрузку.

4. Компактность, надёжность и радующая глаз простота исполнения.

Тезисы оформлены без нарушений требований, переходим к схеме электрической принципиальной импульсного блока питания.

Плавный пуск и схема защиты импульсного блока питания
Рис.1

Начнём со схемы (Рис.1), обеспечивающей мягкий и плавный пуск ИБП. Она же является устройством защиты импульсного блока питания от токовых перегрузок и КЗ, она же содержит элементы, предотвращающие проникновение импульсных помех в питающую сеть, она же формирует необходимые постоянные напряжения, необходимые для работы драйвера и ключевых транзисторов.

— Так, а что там, собственно-то, осталось? С гулькин хрен! Надо ж было сразу всё рисовать, а не размножать всякие писульки! — резонно зафиксирует мысль подготовленный радиолюбитель.

Торопиться не надо!
Во-первых, приведённая схема сгодится не только для преобразователей, собранных на IR2153, но и для любых других устройств, независимо от используемой элементной базы. Низковольтное напряжение (15В) может быть выбрано любой величины, посредством замены D2 на стабилитрон с соответствующим напряжением пробоя.

Во-вторых, даже при изготовлении источника питания на заявленной в заголовке микросхеме IR2153, имеет серьёзный резон сначала собрать приблуду, приведённую на Рис.1, десяток раз проверить соответствие принципиальной схеме, прозвонить тестером на отсутствие КЗ между дорожками платы, далее, подключившись к сети, убедиться в наличии работоспособности, а затем уже продолжать все дальнейшие манипуляции.
Настройки схема не требует, при отсутствии ошибок сразу запашет как зверь!

А вот теперь можно повеселиться по полной программе! Любые дефективные двигания шаловливыми ручонками при сборке преобразователя, ключевых транзисторов и импульсного трансформатора будут моментально зафиксированы устройством защиты и не приведут к каким-либо серьёзным последствиям для элементов схемы. Ручонки могут пострадать, элементы — вряд ли!

Как это всё работает?

Переключатель S1 — это тумблер без фиксации, алгоритм работы (on)-off-(on), количество контактных групп — 2.
В момент перевода тумблера в состояние «вкл» через сопротивление R1 и двухполупериодный выпрямитель Br1 начинается заряд входного сглаживающего конденсатора C3.
Номинал резистора выбран такой величины, чтобы максимальный импульсный ток, протекающий через элементы в начальный момент включения, не превышал 10А.

По мере заряда конденсатора увеличивается и ток через последовательную цепочку R2, LED1, Ref1, D2. Через несколько десятков миллисекунд этот ток достигает значения, достаточного для включения реле Ref1. После включения реле, его контакты К1 замыкают и R1, и контакты тумблера. Всё — плавный пуск импульсного блока питания завершён, светодиод горит, можно отпускать пипку переключателя.

Выключение блока питания у нас завязано на схеме защиты, реализованной на транзисторах Т1, Т2, включённых по схеме эквивалента тиристора. Какой должна быть эта схема для предотвращения ложных срабатываний, мы подробно рассмотрели на странице   Ссылка на страницу .

Схема обладает небольшим и предсказуемым током включения (около 100мкА), что позволяет отказаться от построечных резисторов при выборе необходимого порога срабатывания. Величина сопротивления R=R6IIR7 выбирается исходя из формулы R=0,77/Iср, т.е. в нашем случае Iср=0,77/0,5=1,54А.

Механизмы выключения ИБП — что при нажатии кнопки S1 в положение «выкл», что при срабатывании защиты абсолютно идентичны. Под воздействием напряжения, превышающем пороговый уровень на переходе база-эмиттер транзистора Т1, аналог тиристора переходит в проводящее состояние, верхний вывод реле замыкается на нулевую точку, реле отщёлкивается, блок питания от сети полностью отключается.

П-образный фильтр С1, Др1, С2 служит для предотвращения проникновения импульсных помех в сеть. Я использовал готовый 2х2.2мГн, 2A фирмы Epcos, позволяющий работать с мощностями до 600Вт. Если не влом заняться самообразованием, то можно намотать и самостоятельно на Amidon-овских кольцах их карбонильного железа марок: 26, 38, 40, 45, 52. Всю необходимую информацию можно найти на сайте производителя.

Диодный мост должен быть рассчитан на постоянное обратное напряжение не менее 400В, у меня под рукой оказалась радиодеталь с большим запасом по мощности — BR1004 на 10А.

Реле должно выдерживать необходимый максимальный коммутируемый ток и не гнушаться работой с сетевым напряжением. Ток срабатывания не должен превышать 20мА, как правило в документации такие реле называются — High Sensitive. У меня выбор пал на NRP05-A-12D, 12V / 5A, 250VAC.

Ограничений по максимальной мощности импульсного блока питания у приведённой схемы защиты и плавного пуска — нет. Естественным образом следует озаботиться выбором элементов Др1 и Br1, соответствующих максимальным токам, гуляющим по высоковольтным цепях устройства.

Принято считать, что минимальная величина ёмкости электролитического конденсатора С3 должна составлять 100МкФ на каждые 100Вт мощности. Увеличение этого значения в 1,5 — 2 раза, пойдёт только на пользу характеристикам ИБП, хотя и излишний фанатизм не приветствуется во избежание чрезмерного увеличения массогабаритных характеристик.

Стабилитрон D1 я пририсовал на схеме на всякий пожарный уже в процессе написания статьи для исключения возможного включения реле обратным напряжением, накопленным на С4 в момент срабатывания транзисторной защёлки. В оригинале всё прекрасно работает и без него!

Что-то, как-то слишком многословно получилось.
«Краткость есть душа ума…». Ну да ладно, продолжим разговор на следующей странице.

Плавный пуск и схема защиты импульсного блока питания

 

Сетевой импульсный блок питания на IR2153/2155 — Меандр — занимательная электроника

Импульсный блок питания я решил сделать потамучто он на первый взгляд гораздо дешевле сетевого трансформатора, конечно если речь идёт о мощности более 150вт, хотя с такими темпами роста цен на Чип Диповские торы сейчас уже и вместо ТТП60 выгоднее использовать ИБП 🙂 Во вторых вес получается значительно меньше, в третьих ИБП может работать при повышенном напряжении сети без каких либо отрицательных последствий, естественно в разумных пределах, всё ограничено Vds полевиков и напряжением основных фильтрующих кондёров. А вот сетевые трансы при повышении напряжения в сети начинают сильно гудеть и гретья. Также из за очень низкого сопротивления вторичной обмотки, выходное сопротивление ИБП меньше чем у простых блоков питания. Главный недостаток ИБП это ВЧ помехи. Надо принимать меры чтоб их как можно сильнее подавить. Ещё в момент подачи питания он потребляет очень большой пиковый ток, поэтому на больших мощностях надо применять специальные системы софт старта и мягкой зарядки фильтрующих конденсаторов и конденсаторов делителя. В моём случае киловатты не требуются поэтому я обошёлся просто последовательной цепочкой из резистора и термистора. Некоторые могут подумать что из за этой цепочки будет проседать выходное напряжение, но всё не так страшно. Предположим если начальное сопротивление её 10ом то при токе 2А (это 440вт) на ней просядет 20в тоесть это менее 10%. Надёжность и ЭМИ блока питания в первую очередь зависят от разводки платы, она перетерпела доработок и изменений не меньше чем для TDA8924. Я считаю что сейчас самый оптимальный вариант, по крайней мере на 1 слое лучше не сделать. Очень не рекомендую что либо менять на плате в высоковольтной части и части управления.

Вот схема моего блока питания.
Сначала идут резисторы для плавной зарядки конденсаторов делителя, потом сетевой фильтр. У меня стоит дроссель PLA на 1А, на плату можно установить также дроссель из компьютерного блока питания. Далее плоский низкочастотный диодный мост GBU, они бывают на токи до 25А. Чтобы поставить более распространённый KBU плату надо слегка изменить (отодвинуть конденсаторы делителя от радиатора). Затем стоит делитель. Переусердствовать с этими ёмкостями не стоит, слишком много ставить нельзя тк при каждом включении есть вероятность сжигать предохранитель, а если повезёт то и автомат защиты в щитке :)) Оптимально 150-330мк 200в. После организовано питание микросхемы от средней точки делителя, это позволяет снизить суммарное тепловыделение схемы на резисторах примерно на 1вт. Схема включения 2153 стандартная из даташита. Чтобы выбрать P1 для нужной частоты читайте даташит на мс. Полевые транзисторы IRFI840GLC это лучшее что может быть для этой схемы от IR. С другими фирмами сталкиваться не приходилось. Если хотите сэкономить то можно поставить IRFIBC30G они чуть послабее но даже их хватит для мощности около 300вт, больше 400вт я бы не стал снимать с такого ИБП. Какие либо другие полевики ставить не рекомендую. Иначе придётся уменьшать R2, R3 и это приведёт к увеличению тепловыделения на них. Напряжение на мс во время работы должно быть не менее 10в! Оптимально 11-14. Цепочка L1 C13 R8 слегка облегчает режим работы полевиков, в принципе её можно просто закоротить, сильно хуже не станет, а ЭМИ даже слегка уменьшатся. Снаббер R7 C12 тоже не обязателен но желателен, для подавления вч грязи.

Выходные дроссели я мотал на ферритовых гантельках проницаемостью 600НН. Индуктивность их около 10мкг, намотано 2 слоя провода около 1мм. Можно мотать на стержнях от старых приёмников, хватит витков 10-15. Основные конденсаторы выходного фильтра Jamicon WL. Если нет возможности поставить Low ESR то параллельно конденсаторам стандартного типа нужно добавить керамику 0.1-0.22мк. Но Low ESR в этом месте крайне желательны, ток пульсаций у 4700мк/35в Jamicon WL больше чем у стандартного 22000/35в!

Подробно расписывать про расчёт и намотку трансформатора не буду, тк в интернете на эту тему очень много написано. Я считаю в программе Transformer 2. Результат похож на правду. Индукцию нужно выбирать как можно меньше, лучше не более 0.25. Частоту в районе 40-80к. Очень не рекомендую использовать наши кольца из за сильного разброса параметров и больших потерь. После того как я попробовал кольца Epcos про наши просто забыл. Они дороже в 3-5 раз но они того стоят! Плата составлялась под кольцо 30х19х20. Во время проверки ИБП надо быть осторожным. НЕЛЬЗЯ тыкать землёй осциллографа на выход (точку соединения D-S полевиков). Первый раз можно последовательно блоку питания включить лампу 220в 25-40вт, но сильно нагружать в этом случае его нельзя только ватт на 3-5 макс.

Печатная плата:

[hidepost=0]Скачать плату ИБП в формате lay.[/hidepost]

Онлайн калькулятор по рассчёту частоты и RC-цепи IR2153


Перенесу-ка я сюда схему устройства мягкого пуска и защиты импульсника с предыдущей страницы.
Плавный пуск и схема защиты импульсного блока питания
Рис.1

Фактически, основной фрагмент импульсного блока питания (Рис.2), состоящий из самотактируемого полумостового драйвера, управляющего мощными полевыми транзисторами, самих транзисторов и импульсного трансформатора — издавна уже обрёл привычные очертания, отработан до мелочей и радует счастливые взоры радиолюбителей предсказуемым поведением и весьма приличными характеристиками.
Импульсный источник питания на микросхеме IR2153
Рис.2

Приведённая схема импульсного источника питания позволяет снимать с блока максимальную мощность до 300Вт.
Дополнительные резисторы R9 и R10 введены для устранения сквозных токов через транзисторные ключи в начальный момент включения блока питания (до тех пор, пока напряжение питания микросхемы DA1 не достигнет рабочих значений).

Частота преобразования драйвера IR2153 — 50кГц. При желании изменить тактовую частоту следует изменить значения номиналов элементов R1 и С1 в соответствии с формулой F = 1 / [1,4×C×(R+75)].

Большинство схемотехнических решений ИПБ на IR2153, представленных в сети, не учитывают простой рекомендации производителя микросхемы по выбору номиналов данных элементов, а именно:
Timing resistor value (Min) — 10 kΩ, CT pin capacitor value (Min) — 330 pF.

Для удобства приведу простой калькулятор по расчёту частотозадающих элементов IR2153.


И с другими вводными — частота IR2153 с учётом имеющихся у Вас деталей.
На страшилки по поводу опасности несущественного отклонения рабочей частоты от расчётной, как то: насыщение феррита, снижение КПД и т.д. и т.п. — не следует обращать никакого внимания. Прекрасно Ваш феррит переживёт подобные отклонения, вплоть до 10-15% изменения частоты преобразователя, без всяких последствий для собственного здоровья.

Теперь о намотке трансформатора Tr1.
Парой слов здесь ограничиться не удастся, потому как именно импульсный трансформатор назначен главным ответственным за показатели ИБП.
Собственно, исходя из этих соображений, мы и посвятили целую статью расчётам и намотке трансформатора на тороидальном ферритовом сердечнике для данного блока с возможностью выбора желаемого диапазона мощностей — Ссылка на страницу.

Плавно переходим к снабберной цепочке R8, С9. Снаббер – это демпфирующее устройство, которое выполняет действие по замыканию на себе токов переходных процессов. Устройство предназначено для подавления индуктивных выбросов, которые появляются при переключении коммутационных полупроводников и способствует снижению величины нагрева обмоток трансформатора и силовых транзисторов.
В теории, существуют методики расчёта снабберных цепей. На практике — а не пошли бы они лесом, уж очень много различных параметров необходимо учитывать для получения корректного результата. К тому же достаточно велика вероятность того, что данная цепочка вообще не понадобится в транзисторно-трансформаторном хозяйстве.
Для проверки этого предчувствия следует к выходу ИПБ подключить нагрузку, обеспечивающую его работу при 10% мощности от максимальной, и поочерёдно ткнувшись пальцем в импульсный трансформатор и радиатор выходных транзисторов, убедиться, что температура данных элементов не превышает 30-40 градусов.
Если это так, то про снабберную цепочку забываем, если не повезло — начинаем юзать снаббер, начиная со значения ёмкости конденсатора С9 200пФ и постепенно повышая её до тех пор, пока не будет получен устойчивый положительный результат. Естественным делом данный конденсатор обязан быть высоковольтным.

Выходной выпрямитель особенностей не имеет, П-образные фильтры C5,L1,C9 и C6,L2,C11 необходимы для предотвращения попадания высокочастотных помех в нагрузку, электролиты С10 и С12 борются с сетевыми 50-ти герцовыми пульсациями. Дроссели L1 и L2 номиналом 10-20 мкГн, должны быть рассчитаны на максимальный ток нагрузки, и могут быть как покупными, так и самостоятельно намотанными на силовых ферритах.

Радиатор для ключевых транзисторов Т1, Т2 для схемы, приведённой на Рис.2, должен рассчитываться исходя мощности рассеивания 3-5Вт и в простейшем случае может представлять из себя алюминиевую или медную пластину площадью 40-50 см2.

При необходимости радикально увеличить мощность блока питания вплоть до 1000 Вт имеет смысл воспользоваться ещё одной расхожей схемой ИБП с использованием более мощных полевых транзисторов (Рис.3).
Мощный импульсный блок питания на микросхеме IR2153
Рис.3

Поскольку выходным драйверам IR2153 сложновато прокачать значительные ёмкости Сзи могучих полевиков, в схему добавлены двухтактные эмиттерные повторители на транзисторах Т1-Т4, во всём остальном схема повторяет свой менее мощный аналог, приведённый на Рис.2.
Значения ёмкостей конденсаторов С3, С4 приведены для мощности ИБП 500Вт, для 1000Вт их номиналы следует увеличить в 2 раза.
Пропорционально росту мощности ИПБ в соответствующее количество раз нужно увеличивать и размер радиатора полевых транзисторов.
Расчёт трансформатора произведём всё на той же странице — Ссылка на страницу.

Ну а на следующей странице с головой окунёмся в культработу над мощным лабораторным блоком питания с регулируемым выходным напряжением.

Мощный импульсный блок питания на микросхеме IR2153 Мощный импульсный блок питания на микросхеме IR2153

 

Отправить ответ

avatar
  Подписаться  
Уведомление о