Содержание

Принцип усиления транзистора | Как усиливает транзистор

Что такое усиление

Давайте для начала разберем, что мы вообще подразумеваем под словом “усиление”? Ну… усиление это когда мы производим какое-то действие, чтобы было лучше, качественнее, комфортнее, удобнее, безопаснее. По-моему как-то так. Усиливаем подвеску на машине, чтобы езда была комфортнее. Усиливаем фундамент под дом, загоняя туда железную арматуру, чтобы дом стоял долго и не трещал. Усиливаем армию военной техникой, чтобы обеспечить себе и своему народу безопасность, усиливаем свое тело, чтобы выглядеть уверенно и дать отпор гопникам.

Принцип усиления транзистора

Но какое слово идет рядом в паре со словом “усиление”? Мне кажется – это слово “мощность”. 

Усиливаем подвеску на машине, то есть делаем ее мощнее. Усиливаем фундамент – делаем его мощнее. Усиливаем армию танками и самолетами – делаем ее мощнее :-), усиливаем свою тушку – значит делаем ее опять же

мощнее.

Давайте рассмотрим на примере человека. Как же его усилить? Здесь я вижу два варианта:

Увеличить человека в размерах

Принцип усиления транзистора

Либо усилить его с помощью экзоскелета:

Принцип усиления транзистора

Тут уже даже и ежу понятно, что мощности каждого из этих персонажей хватит для того, чтобы размотать целую роту вояк в рукопашном бою. В первом случае их проще будет давить либо пяточкой, а если попадется воспитанный великан с хорошими манерами – то пальчиками :-). Во втором случае, с экзоскелетом – хуком справа и слева.

Значит, для того, чтобы сделать сигнал мощнее, мы должны либо увеличить его амплитуду, либо увеличить его…Хм… Зачем наш Тони Старк сделал себе костюм? Чтобы он защищал его тело, то есть чтобы оказывать

сопротивление ударам, пулям и тд. Какая-бы пулька или удар не влетали в него, он бы стоял колом (разумеется в разумных пределах) То есть его экзоскелет защищает его от разного рода сопротивления.

Получается,  для нашего сигнала какое бы сопротивление он не встретил на своем пути, он будет таким же “бодрым и энергичным”, каким был и до встречи с нагрузкой. Если Тони Старк брал энергию из своей реактора на груди, то сигнал должен брать энергию от какого-либо мощного источника 😉  Сравнение, конечно, так себе, но думаю, суть вы уловили.

Как усиливает транзистор

Итак, представим себе нашу сборную России по футболу. Ну да, ребята частенько лажают), но суть не в этом. Для того, чтобы наши футболисты играли хорошо, нужно к каждому футболисту приставить хорошего тренера, установить нормальный график труда и отдыха, кормить самой лучшей спортивной едой, пичкать допингами и тд. Как результат – команда может быть дотянет до полуфинала на чемпионате мира.

Но… есть и другой вариант. Почему бы в команду не пригласить таких футболистов, как Месси, Рональдо, Роналду, Бекхэма и других знаменитостей? То есть в этом варианте мы полностью заменили всю команду. Но для нас ведь главное  – победа, и не волнует, кто играет в нашей команде. Главное, чтобы наша команда порвала всех на чемпионате.

И там и там мы усилили эти команды. Но как вы думаете, какой вариант будет лучше? Ну тут уже и ежу понятно, что второй вариант – стопроцентный! Если провести параллельную грань с электроникой, то можно сказать, что транзистор использует именно второй вариант. В нем нет ничего такого, чтобы он сам бы усиливал сигнал. Он его полностью заменяет

другим сигналом. То есть усиливаемый сигнал, который выходит из транзистора, является копией входного слабенького сигнала, но это не тот же самый слабенький сигнал.

Тяжко для понимания? Ну давайте приведем тогда еще один пример.

Вернемся в детство. Вам купили маленького хомячка. Вы за ним ухаживаете, меняете водичку, убираете какашки, покупаете колесико, чтобы он бегал и радовался жизни. Через год из маленького хомячка вырастает здоровый пушистый хомяк. Вы очень рады, что у вас вырос такой здоровый хомячок. Но…  как-то летом вы решили съездить в деревню к бабушке, за хомяком никто не ухаживал и он сдох. Ваши предки, конечно же, ничего вам не сказали. Они быстренько сбегали в зоомагазин и купили точно такого же хомяка! Один в один! Вы приезжаете к себе домой и продолжаете радоваться своему хомяку, даже не догадываясь, что это вообще не он))). Именно точно также ведет себя транзистор). Он не усиливает сигнал, а просто выводит усиленную копию на выходе.

Откуда берется энергия для усиления

Вспомните  также в своей жизни моменты, когда вы или кто-то другой прилагали очень малую силушку, но наворотили делов.

Принцип усиления транзистора

Получается, какое-то слабенькое движение хвостиком привело к нехорошим последствиям, но энергия использовалась извне. Для мышки-норушки это будет гравитационная сила. Тот же самый принцип заложен и в транзисторе. Он не может сам по себе усиливать. Он использует энергию извне. А для энергии извне используется источник постоянного тока.

Можно сказать, транзистор представляет из себя именно такую же систему – слабенький управляющий базовый ток управляет огромным током коллектор-эмиттер. Справа это все показано на бачке с водой. То есть чуток открыв краник, чтобы из трубки “База”(Б) полилась водичка, мы открываем клапан, который держит закрытым бачок “Коллектор” (К). Вода сразу же из бачка “Коллектор” стремится в тазик “Эмиттер” (Э). Если же мы закрываем краник “База”, то пружинка возвращает клапан и закрывает прохождение водички из бачка “Коллектор”.

Принцип усиления транзистора

Из всего выше рассказанного и показанного можно сделать некоторые выводы:

Принцип усиления транзистора

– выходной сигнал с транзистора – это усиленная копия входного сигнала

– транзистор для усиления сигнала использует энергию извне, а точнее, источник постоянного тока.

– малый управляющий базовый ток управляет намного большим коллекторным током (рисунок выше)

– независимо от схемы включения управляющий P-N переход – эмиттерный, а управляемая цепь – эмиттер-коллектор

Усиление в электронике

Увеличивая амплитуду сигнала, мы меняем его напряжение, а делая сигнал “неуязвимым”, мы добавляем ему силу. Силу тока. Поэтому, увеличивая или напряжение, или силу тока, либо сразу два этих параметра, мы сделаем сигнал мощнее.

Для тех, кто позабыл:

P=IU

где

P – это мощность, измеряется в Ваттах

I – сила тока, в Амперах

U – напряжение, в Вольтах

В своих электронных разработках вы должны точно решить для себя, что именно собираетесь делать с сигналом:

– увеличить его амплитуду напряжения, при этом силу тока оставить неизменной

– оставить амплитуду напряжение такой же, но прибавить мощности с помощью силы тока

– увеличить и напряжение и силу тока

В основном применяют усиление сразу по обоим параметрам.  Поэтому в электронике чаще всего используется схема с ОЭ (Общим Эмиттером), которая увеличивает сигнал и по силе тока, и по напряжению одновременно.

Для транзистора PNP проводимости подключение транзистора  с ОЭ выглядит так:

А для NPN транзистора вот так:

Но вы также должны иметь ввиду, что в электронике нам не просто надо усилить сигнал, а усилить его правильно, чтобы он не потерял свой первозданный вид. Мощная копия сигнала должна пропорционально усиливаться по амплитуде. По времени мы не должны ее трогать, иначе изменится частота сигнала. Но тогда это уже будет совсем другой сигнал.

На рисунке ниже мы можем увидеть входной слабенький сигнал, а на выходе усиленный сигнал после транзисторного каскада.

Как мы видим, сигнал по амплитуде изменился линейно и пропорционально, но период сигнала не изменился. То есть T1=T2. Это пример идеального усилителя.

Принцип усиления

Усилители в электронике в большинстве случаев усиливают именно напряжение. То есть на вход загоняем какой-либо маленький сигнал напряжения, а на выходе мы должны уже получить точную копию сигнала, но бОльшего напряжения. Но как это сделать с практической точки зрения?

А почему бы нам не использовать делитель напряжения, у которого один резистор будет постоянным, а другой – переменным:

Что будет, если мы на переменном резисторе будем менять сопротивление? Правильно! Будем меняться напряжение на выходе

U. А теперь представьте, что мы не ручками меняли бы сопротивление, а за нас это бы делало напряжение? Чем больше меняем напряжение, тем больше меняется сопротивление. То есть сопротивление переменного резистора менялось бы прямо пропорционально напряжению. Было бы круто, так ведь?

Помните, как в одной из статей мы сравнивали транзистор с краником? Открываем чуток – напор воды слабый, открываем больше – сильнее. Открываем полностью – вода бежит полным потоком

Принцип усиления транзистора

В биполярном транзисторе происходят похожие процессы. Меняя значение напряжения на базе, а следовательно силу тока в цепи база-эмиттер, мы тем самым меняем сопротивление между коллектором и эмиттером 😉 Следовательно, наша схема из такого вида:

примет вот такой вид

Выглядеть должно все приблизительно так, но не совсем так… и далее вы поймете почему.

Опыт с транзистором

Итак, для того, чтобы все это показать нам понадобится:

1) Генератор частоты. Он у меня китайского происхождения.

2) Двухканальный цифровой осциллограф OWON

3) Блок питания постоянного напряжения

А также мелочевка… Транзистор и резистор. Собираем все это дело вот по такой схеме:

Осциллограммы будем снимать с красной и желтой точек на схеме.

Загоняю на базу сигнал с частотой в 1 КилоГерц и амплитудой в 1 Вольт. Смотрим, что у нас получилось:

Принцип усиления транзистора

На осциллограмме, снятой с желтой точки, мы видим только шумы.

Ладно, ставлю амплитуду в 2 Вольта:

Принцип усиления транзистора

Ничего не изменилось…

И только тогда, когда уже амплитуда стала больше, чем 2 Вольта, на желтой осциллограмме появился уже какой-то периодический сигнал

Принцип усиления транзистора

С увеличением амплитуды его импульсы просто стали шире.

Принцип усиления транзистора

Принцип усиления транзистора

Итак, теперь обо все по  порядку:

Первый косяк этой схемы в том, что мы не учли напряжение для открытия транзистора. Оно, как вы помните, составляет 0,6-0,7 Вольт.

Режимы работы транзистора

Второй косяк. Для того, чтобы транзистор усиливал, мы его должны вогнать в активный режим. Это промежуточный режим между режимом насыщения и режимом отсечки транзистора.

Режим отсечки – это когда транзистор полностью закрытый, то есть нет напряжения смещения на базе-эмиттере 0,6-0,7. Вольт. В этом случае у нас сопротивление между коллектором и эмиттером очень большое.

Режим насыщения – это когда транзистор полностью открытый. В этом режиме смещение на базе-эмиттере более, чем 0,6-0,7 Вольт и сопротивление между коллектором и эмиттером равняется почти нулю.

В режиме отсечки и насыщения работает транзисторный ключ.

В активном режиме напряжение смещения более, чем 0,6-0,7 Вольт, но у нас сопротивление между коллектором и эмиттером не равняется ни нулю, ни бесконечности. В этом режиме мы можем регулировать сопротивление с помощью силы тока, проходящего между базой и эмиттером. А чтобы регулировать эту силу тока , мы можем подавать большее или меньшее напряжение на базу.

Если все объяснить заумной фразой получается так: небольшое изменение силы тока в цепи базы-эмиттер приводит к пропорциональному изменению силы тока в цепи коллектор-эмиттер. Коэффициент, показывающий, во сколько раз увеличивается сила тока коллектор-эмиттер от силы тока базы-эмиттер называется коэффициентом усиления по току в схеме с ОЭ. Этот коэффициент часто называют h21э или просто  β.

Думаю, большинство из вас сидело за рулем авто. Может быть, вы когда-нибудь даже пользовались педалью газа)

Принцип усиления транзистора

Допустим, мы поставили первую скорость и решили проехаться по трассе. Топим педаль в пол и едем на всей первой скорости, не переключая коробку скоростей. По аналогии с транзистором – это и есть режим насыщения.

Вообще убираем ногу от педали – машина встает колом. Это режим отсечки (о понятии отсечки в самом авто мы с вами сейчас не говорим). В этом режиме мы вообще не касаемся педали.

Ну а в активном режиме мы нажимаем педаль с такой силой, которая нам нужна 😉 В этом режиме мы сами регулируем скорость. Хотим – едем быстрее, а хотим медленнее 😉  То есть мы управляем автомобилем между режимами отсечки и насыщения. Именно в этом режиме работает транзистор в режиме усиления сигналов.

Недостатки усилителя на транзисторе

Честно говоря, усилитель на биполярном транзисторе – тот еще геморрой.

Во-первых, он управляется силой тока, а не напряжением.

Во-вторых, мы должны обязательно предусмотреть напряжение смещения.

В-третьих, схема каскада усилителя на биполярном транзисторе получается довольно таки громоздкая

В-четвертых, даже тогда, когда мы не подаем сигнал на такой транзисторный каскад, то схема все равно жрет ток.

Как тогда должны выглядеть схема, чтобы мы могли из слабого сигнала получать усиленную копию?

Основные схемы включения транзистора

Итак, существуют три основные схемы соединения биполярного транзистора:

– с Общей Базой (ОБ)

Эта схема усиливает по напряжению. Схема с общей базой используется редко.

– с Общим Эмиттером (ОЭ)

Эта схема усиливает и по напряжению, и по току, и на практике используется наиболее часто.

– с Общим Коллектором (ОК)

Эта схема усиливает по току. Ее часто называют эмиттерный повторитель.

Здесь все просто: какой вывод является общим для входного и выходного сигнала, такая значит и схема включения транзистора.

Обозначение напряжений выводов транзистора

А теперь давайте поговорим об условностях, которые применяются в схемотехническом жаргоне транзистора.

Итак, если вы слышите, что напряжение на базе равно 1 Вольт, то это означает, что это напряжение между базой и общим проводником. На общий в основном садят “минус” и обозначается общий проводник вот таким значком:

Например, UБ  (напряжение на базе)  транзистора VT1 замеряется как-то вот так:

напряжение на базе транзистора

Напряжение между выводами обозначается двумя индексами, например, напряжение между базой и эмиттером обозначается как UБЭ . Также на схемах часто можно увидеть обозначения типа UКК (в буржуйском варианте VCC ) – это напряжение питания коллектора, обычно положительное. Также есть и UЭЭ (в буржуйском варианте VEE) – напряжение питания эмиттера, обычно отрицательное. Короче говоря, это в основном напряжение питания схемы.

Также имейте ввиду, что каждый транзистор характеризуется основными максимальными параметрами такими как:

1) Iк  ток коллектора

2) UКЭ  напряжение между коллектором и эмиттером

3) P  мощность, которая рассеивается на транзисторе. Р = IК UКЭ 

4) UБЭ  напряжение между базой и эмиттером

Attention!

Превышение какого-либо параметра из списка выше приведет к неминуемой гибели транзистора!

Принцип работы транзистора

Для того, чтобы понять принцип работы транзистора, давайте рассмотрим вот такое фото:

Условимся считать, что это самая простая модель транзистора. Направление потока воды – это направление электрического тока. Пусть у нашего “транзистора” будет проводимость N-P-N, то есть он будет выглядеть вот так:

С помощью краника (Базы) мы уменьшаем или увеличиваем скорость потока воды через трубу. В нашем случае вода бежит с жёлтой трубы к чёрной трубе, или по аналогии с транзистором: от коллектора к эмиттеру, потому что стрелочка эмиттера показывает направление электрического тока.

Итак, в таком положении краник полностью закрыт, следовательно поток воды не проходит через трубу:

А вот так краник полностью открыт и поток воды бежит на полной мощности через трубу:

Краник открыли, вода через трубу побежала на полной мощности:

Принцип усиления транзистора

Краник закрыли, вода не бежит:

Принцип усиления транзистора

С помощью одного только пальчика, я включал и выключал ОГРОМНЫЙ поток воды, который бы мог смыть все какашки на вашей тельняшке). То есть поток воды из трубы обладает огромнейшей силой, по сравнению с силой пальчика, которую я прикладывал к рыжачку краника. 

Транзистор работает аналогичным образом! Прикладывая небольшое напряжение к базе, я могу управлять огромнейшим током проходящим через коллектор и эмиттер. В данном случае я показал только два положения, краник полностью включен, или краник полностью выключен. Режим, при котором я включал и отключал краник до упора, в транзисторе называется “ключевым режимом”.  Не от слова “ключевой” – типа главный, важный, а от слова “ключ”. А что у нас делает ключ? Что-то отпирает и закрывает, да хотя бы те же самые двери или бабушкин комод.

Режим, когда я ЗАКРЫВАЛ краник полностью, называется в транзисторе закрытый или в простонародье “зАпертый”. В этом случае на базу ток не идет и транзистор не пропускает электрический ток между коллектором и эмиттером.

Режим, когда я полностью ОТКРЫВАЛ краник, называется в транзисторе режимом “насыщения”. В этом случае через эмиттер и коллектор ток бежит по полной. Хочу сказать, что дальнейшее открывание краника бессмысленно, так как от этого ток не увеличится между коллектором и эмиттером, то есть нет резона подавать еще большее напряжение на базу, если транзистор уже работает в режиме насыщения.

Опыты на практике

Ну что же, надо теперь все это дело проверить на реальном транзисторе. У нас в гостях всеми вами любимый транзистор КТ815Б:

Его проводимость N-P-N, то есть он выглядит вот так:

Мы с вами разобрали, что краник – это база, а большой поток воды должен течь с коллектора на эмиттер. Направление стрелки на эмиттере показывает направление движения электрического тока. 

В транзисторе все то же самое. Давайте используем его в деле. Для этого собираем вот такую схемку:

Ну что, вроде бы все элементарно и просто. Есть батарея, есть лампочка. Электрический ток должен бежать от “плюса” к “минусу” и лампа должна гореть. Собираем схему в реале. Щупы-крокодилы идут от Блока питания. Красный – плюс, черный – минус. Напряжение на них около 13,5  Вольт, лампа на такое же напряжение. Лампа  не горит… В чем же дело?

Помните эту картинку?

Принцип усиления транзистора

Елки-палки, нам базу-то надо “повернуть” так, чтобы электрический ток мог бежать от коллектора к эмиттеру!  Но как “повернуть” базу? Да все просто! Для этого нам надо всего-то подать на нее напряжение ;-). 

Теперь наша схема будет выглядеть вот так:

Собираем схему. Крокодилы с синими проводами идут от блока питания Bat1.

Но теперь вопрос. Какое минимальное напряжение должно быть на Bat1, чтобы “краник открылся”?

Помните мы с вами разбирали статью, что на PN переходе у кремниевых транзисторов (а у нас как раз кремниевый) “падает” напряжение где-то 0,5-0,7 В? Кто не помнит, читаем эту статью. А давайте выставим на Bat1 где-то 0,5 В.

Нет… не канает.

Кручу крутилку и выставляю 0,6 Вольт и вуаля! В простонародье говорят, что транзистор “открылся”.

Отсюда делаем вывод: для того, чтобы через коллектор-эмиттер побежал электрический ток, мы должны на базу подать напряжение более чем 0,5-0,7 В, то есть  больше падения напряжения на PN переходе.

Но как много мы можем подать напряжения в базу? Давайте крутанем крутилку на уровень 0,7 В.

При 0,7 В базовый ток составляет уже 20 мА.

Давайте еще чуток добавим:

При 0,8 В уже 140 мА.

А при 0,9 Вольтах:

чуть меньше пол-Ампера! Дальнейшее увеличение напряжения может привести … к полному выходу транзистора из строя.

Максимальные параметры транзистора

Каждый транзистор характеризуется основными максимальными параметрами такими как:

1) Iк  ток коллектора

2) UКЭ  напряжение между коллектором и эмиттером

3) P  мощность, которая рассеивается на транзисторе. Р = IКЭ х UКЭ

4) UБЭ  напряжение между базой и эмиттером

Более подробно про них можно прочитать здесь.

Если глянуть в даташит, то можно узнать, что максимальный допустимый ток коллектора транзистора КТ815Б составляет 1,5 А. Но как же теперь быть? Наша аппаратура ведь не может работать с такими маленькими допусками напряжения? А что если вдруг случись, напряжение на базе скаканет на 0,3 В? Транзистору сразу придет жопа… Поэтому, чтобы такого не случилось, в базу транзистора ставят токоограничительный резистор. Резистора на 500 Ом вполне хватит, чтобы транзистор был “открытым” от 1 В и до 40 В (ну это в данном опыте). Все, конечно же, зависит от токоограничительного резистора и самого транзистора.

В основном токоограничительный резистор высчитывают по формулам или на практике.

Итак, сколько у нас потребляет транзистор в открытом состоянии?

P = IU

0,7 В х 20 х 10-3 А = 14 мВт.

А коммутирует нагрузку мощностью 13,5 х 115 х 10-3 = 1,55 Вт

То есть 14 милливатт управляют 1,55 Ваттами.  Это получилось почти в 110 раз больше.  В этом одна из “фишек” транзистора 😉

Описание работы усилителя мощности звука на транзисторах MOSFET

Редакция сайта «Две Схемы» представляет простой, но качественный усилитель НЧ на транзисторах MOSFET. Его схема должна быть хорошо известна радиолюбителям аудиофилам, так как ей уже лет 20. Схема является разработкой знаменитого Энтони Холтона, поэтому её иногда так и называют — УНЧ Holton. Система усиления звука имеет низкие гармонические искажения, не превышающие 0,1%, при мощности на нагрузку порядка 100 Ватт.

Данный усилитель является альтернативой для популярных усилителей серии TDA и подобных попсовых, ведь при чуть большей стоимости можно получить усилитель с явно лучшими характеристиками.

Большим преимуществом системы является простая конструкция и выходной каскад, состоящий из 2-х недорогих МОП-транзисторов. Усилитель может работать с динамиками сопротивлением как 4, так и 8 Ом. Единственной настройкой, которую необходимо выполнить во время запуска — будет установка значения тока покоя выходных транзисторов.

Принципиальная схема УМЗЧ Holton

Усилитель Холтон на MOSFET — схема

Схема является классическим двухступенчатым усилителем, он состоит из дифференциального входного усилителя и симметричного усилителя мощности, в котором работает одна пара силовых транзисторов. Схема системы представлена выше.

Печатная плата

Печатная плата УНЧ — готовый вид

Вот архив с PDF файлами печатной платы — скачать.

Принцип работы усилителя

Транзисторы Т4 (BC546) и T5 (BC546) работают в конфигурации дифференциального усилителя и рассчитаны на питание от источника тока, построенного на основе транзисторов T7 (BC546), T10 (BC546) и резисторах R18 (22 ком), R20 (680 Ом) и R12 (22 ком). Входной сигнал подается на два фильтра: нижних частот, построенный из элементов R6 (470 Ом) и C6 (1 нф) — он ограничивает ВЧ компоненты сигнала и полосовой фильтр, состоящий из C5 (1 мкф), R6 и R10 (47 ком), ограничивающий составляющие сигнала на инфранизких частотах.

Нагрузкой дифференциального усилителя являются резисторы R2 (4,7 ком) и R3 (4,7 ком). Транзисторы T1 (MJE350) и T2 (MJE350) представляют собой еще один каскад усиления, а его нагрузкой являются транзисторы Т8 (MJE340), T9 (MJE340) и T6 (BD139).

Конденсаторы C3 (33 пф) и C4 (33 пф) противодействуют возбуждению усилителя. Конденсатор C8 (10 нф) включенный параллельно R13 (10 ком/1 В), улучшает переходную характеристику УНЧ, что имеет значение для быстро нарастающих входных сигналов.

Транзистор T6 вместе с элементами R9 (4,7 ком), R15 (680 Ом), R16 (82 Ом) и PR1 (5 ком) позволяет установить правильную полярность выходных каскадов усилителя в состоянии покоя. С помощью потенциометра необходимо установить ток покоя выходных транзисторов в пределах 90-110 мА, что соответствует падению напряжения на R8 (0,22 Ом/5 Вт) и R17 (0,22 Ом/5 Вт) в пределах 20-25 мВ. Общее потребление тока в режиме покоя усилителя должен быть в районе 130 мА.

Выходными элементами усилителя являются МОП-транзисторы T3 (IRFP240) и T11 (IRFP9240). Транзисторы эти устанавливаются как повторитель напряжения с большим максимальным выходным током, таким образом, первые 2 каскада должны раскачать достаточно большую амплитуду для выходного сигнала.

Резисторы R8 и R17 были применены, в основном, для быстрого измерения тока покоя транзисторов усилителя мощности без вмешательства в схему. Могут они также пригодиться в случае расширения системы на еще одну пару силовых транзисторов, из-за различий в сопротивлении открытых каналов транзисторов.

Резисторы R5 (470 Ом) и R19 (470 Ом) ограничивают скорость зарядки емкости проходных транзисторов, а, следовательно, ограничивают частотный диапазон усилителя. Диоды D1-D2 (BZX85-C12V) защищают мощные транзисторы. С ними напряжение при запуске относительно источников питания у транзисторов не должно быть больше 12 В.

На плате усилителя предусмотрены места для конденсаторов фильтра питания С2 (4700 мкф/50 в) и C13 (4700 мкф/50 в).

Самодельный транзисторный УНЧ на МОСФЕТ

Управление питается через дополнительный RC фильтр, построенный на элементах R1 (100 Ом/1 В), С1 (220 мкф/50 в) и R23 (100 Ом/1 В) и C12 (220 мкф/50 в).

Источник питания для УМЗЧ

Схема усилителя обеспечивает мощность, которая достигает реальных 100 Вт (эффективное синусоидальная), при входном напряжении в районе 600 мВ и сопротивлением нагрузки 4 Ома.

Усилитель Холтон на плате с деталями

Рекомендуемый трансформатор — тороид 200 Вт с напряжением 2х24 В. После выпрямления и сглаживания должно получиться двух полярное питание усилители мощности в районе +/-33 Вольт. Представленная здесь конструкция является модулем монофонического усилителя с очень хорошими параметрами, построенного на транзисторах MOSFET, который можно использовать как отдельный блок или в составе самодельного домашнего аудиокомплекса.

Схемы УМЗЧ на транзисторах: Секреты надежности усилителей


Схемы УМЗЧ на транзисторах-01Схемы УМЗЧ на транзисторах-01

Увеличение надежности схемы УМЗЧ на транзисторах

Схемы УМЗЧ на транзисторах: секреты надежности усилителей, принципы самостоятельной сборки усилителей мощности, правильные расчеты схемы УМЗЧ на транзисторах.

В данной статье представлены общие рекомендации по самостоятельной сборке усилителей мощности звука. Все показанные расчеты несколько упрощены в сторону запаса не более, чем на 15%.

Выбор драйверного каскада для усилителя мощности.

Драйверным каскадом называют каскад который непосредственно работает на управление оконечного каскада, как правило это первый каскад после усилителя напряжения, обычно эмиттерный повторитель, но при использовании каскодных выходных каскадов может быть включен и по схеме с общим эмиттером.

Основная задача драйверного каскада заключается в разгрузке усилителя напряжения и позволяет развить необходимые токи управления базами мощных выходных транзисторов. Рассмотрим что именно происходит в единичный момент времени в усилителе, для наглядности возьмем довольно популярный усилитель мощности ЛАНЗАР. Схема печатной платы усилителя Ланзар.

Для того, чтобы понять все процессы происходящие в усилителе переделаем его под усилитель постоянного напряжения и это позволит контролировать ВСЕ что происходит в усилителе на протяжении одной полу-волны синусоидального сигнала. В результате переделок получилась схема, показанная на рисунке 1.

Схемы УМЗЧ на транзисторах-1Схемы УМЗЧ на транзисторах-1
Рисунок 1 Принципиальная схема усилителя постоянного напряжения на базе усилителя ЛАНЗАР.

В качестве нагрузки используется постоянное сопротивление величиной 6 Ом. По мере экспериментов оно будет меняться в ту или иную сторону. Питание усилителя возьмем ±60 В.

Итак, для начала установим необходимый ток покоя и проверим в каких точках какие напряжения.

Схемы УМЗЧ на транзисторах-2Схемы УМЗЧ на транзисторах-2
Рисунок 2 Карта напряжений

Схемы УМЗЧ на транзисторах-3Схемы УМЗЧ на транзисторах-3
Рисунок 3 Карта протекающих токов

Схемы УМЗЧ на транзисторах-4Схемы УМЗЧ на транзисторах-4
Рисунок 4 Карта рассеиваемых мощностей

Как видно из рисунка на транзисторах последнего каскада усилителя напряжения Q5 и Q6 выделяется порядка 1 Вт, следовательно этим транзисторам уже необходим теплоотвод. На предпоследнем каскаде (драйверах Q8 и Q9) даже в режиме молчания выделяется порядка 2 Вт, тут уже однозначно требуется радиатор.

Радиатор охлаждения

Ну а для оконечного каскада радиатор уже просто обязателен, хотя в режиме молчания или без нагрузки размеры корпуса транзистора позволяют рассеивать выделяемое тепло. Тут же следует отметить, что в качестве оконечного каскада используется две пары транзисторов, включенных параллельно для увеличения выходной мощности усилителя, поскольку одна пара не в состоянии справится, но об этом несколько позже.

Поскольку переменное напряжение представляет из себя меняющее полярность постоянное, то рассмотрим происходящие процессы на примере одной положительной полуволны с контрольными точками 0,5; 1,0; 1,5; 2,0; 2,5 В (величина входного сигнала, рисунок 5).

Схемы УМЗЧ на транзисторах-5Схемы УМЗЧ на транзисторах-5
Рисунок 5 В качестве примера возьмем положительную полуволну входного сигнала с амплитудой 2,5 В

По мере роста входного сигнала к нагрузке прилагается все большее напряжение, следовательно увеличивается протекающий ток и через нагрузку и через оконечные транзисторы. Поскольку мы используем биполярные транзисторы, то ток коллектора на прямую зависит от тока базы, следовательно чем больший ток требуется пропустить через оконечный транзистор, тем больший ток требуется приложить к его базе.

Этим собственно и занимается драйверный каскад усилителя. Как видно из рисунка 6 по мере роста амплитуды входного сигнала протекающий ток через оконечные транзисторы увеличивается, увеличивается и ток, протекающий через транзисторы предпоследнего каскада, а вот мгновенно рассеиваемая мощность сначала увеличивается, а потом уменьшается.

Тут, пожалуй, следует пояснить почему мощность увеличивается, а затем уменьшается, хотя казалось бы она должна не уклонно расти. Дело в том, что выделяемая на элементе мощность зависит от протекающего через элемент тока и падения напряжения на нем. Да, да это школьный курс физики, тот самый закон Ома.

Схемы УМЗЧ на транзисторах-6Схемы УМЗЧ на транзисторах-6
Рисунок 6 Изменение токов и рассеиваемых мощностей в зависимости о величины входного сигнала

Схемы для наглядности

Для большей ясности рассмотрим простенькую схемку, состоящую из источника питания, сопротивления нагрузки и транзистора, через который собственно и подается напряжение на нагрузку. Однако в данном случае транзистор будет выполнять роль переменного резистора в качестве движка которого можно подразумевать ток, протекающий через его базу. Для большей наглядности заменим транзистор резистором R1, сопротивление которого мы и будем менять (рис 7).

Схемы УМЗЧ на транзисторах-7Схемы УМЗЧ на транзисторах-7
Рисунок 7 Принципиальная схема поясняющая рассеиваемые мощности

На рисунке 7 сопротивление регулируемого элемента (R1) равно 1000 кОм, ну что то типа утечки. В этом случае через нагрузку протекают микро токи и на регулирующем элементе рассеиваются микро ватты. Но стоит уменьшить сопротивление регулирующего элемента до такой степени, чтобы приложить к нагрузке 0,5 В как картина начинает меняться — рисунок 8. Поскольку к нагрузке прилагается 0,5 В, а напряжение питания составляет 10 В, то на регулирующем элементе падение будет составлять 9,5 В, что собственно и показывает подключенный к выводам регулирующего элемента вольтметр.

Ток через нагрузку и регулирующий элемент будет составлять 50 мА, т.е. 0,05 А. В этом случае, для вычисления выделяемой регулирующим элементом мощности, следует протекающий через него ток (0,05 А) умножить на приложенное к его выводам напряжение (9,5 В). В результате мы получаем, что выделяемая регулирующим элементом будет рассеиваться 0,475 Вт (475 мВт, как показывает симулятор).

Схемы УМЗЧ на транзисторах-8Схемы УМЗЧ на транзисторах-8
Рисунок 8

Далее приложим к нагрузке 1 В. На регулирующем элементе остается 9 В, а протекающий ток составит 0,1 А (рис 9). Выделяемая мощность на регулирующем элементе составит 9 В х 0,1 А = 0,9 Вт (900мВт согласно симулятору). Пока все верно: увеличивается протекающий ток — увеличивается рассеиваемая мощность.

Схемы УМЗЧ на транзисторах-9Схемы УМЗЧ на транзисторах-9
Рисунок 9

Далее приложим к нагрузке 2 В. Падение на регулирующем элементе 8 В, протекающий ток составляет 0,2 А, рассеиваемая мощность 8 В х 0,2 А = 1,6 Вт. (рис 10)

Схемы УМЗЧ на транзисторах-10Схемы УМЗЧ на транзисторах-10
Рисунок 10

Казалось бы, что дальнейшие вычисления не имеют смысла — с увеличением протекающего тока увеличивается и рассеиваемая регулирующим элементом мощность. Да, все верно, но лишь до тех пор, пока АКТИВНОЕ сопротивление регулирующего элемента не станет равным сопротивлению нагрузки. В этом случае к нагрузке будет приложено 5 В, протекающий ток составит 0,5 А, на регулирующем элементе и на нагрузке будет рассеиваться по 2,5 Вт (рис 11).

Схемы УМЗЧ на транзисторах-11Схемы УМЗЧ на транзисторах-11
Рисунок 11

Теперь активное сопротивление регулирующего элемента меньше сопротивления нагрузки, приложенное к его выводам напряжение равно 4 В, протекающий ток равен 0,6 А, следовательно рассеиваемая мощность равна 4 В х 0,6 А = 2,4 Вт, т.е рассеиваемая мощность начинает уменьшаться, не смотря на то, что протекающий через регулирующий элемент ток продолжает увеличиваться (рис 12).

Схемы УМЗЧ на транзисторах-12Схемы УМЗЧ на транзисторах-12
Рисунок 12

Для очистки совести откроем даташник на популярные в звукотехнике транзисторы 2SA1943 и 2SC5200 и посмотрим величину напряжения коллектор-эмиттер в открытом состоянии. Для 2SC5200 эта величина составляет 0,4 В, для 2SA1943 — 1,5 В. Поскольку последняя величина больше, то ее и попробуем — уменьшим величину активного сопротивления регулирующего элемента до получения падения на нем 1,5 В (рис 13).

Схемы УМЗЧ на транзисторах-13Схемы УМЗЧ на транзисторах-13
Рисунок 13

Из всего выше сказанного следует, что рассеиваемая мощность на регулирующем элементе связана не только с протекающим через нее током, падением напряжения, но и с сопротивлением нагрузки и максимальное тепловыделение происходит в тот момент, когда активное сопротивление регулирующего элемента равно сопротивлению нагрузки.

Снова к усилителю

Ну теперь вернемся к усилителю постоянного напряжения, к рисунку 6. Как видно максимальный ток через транзисторы драйвера и оконечные транзисторы протекает как раз в момент когда входное напряжение составляет 2,5 В при нагрузке 3 Ома. Следовательно транзисторы драйвера должен быть рассчитан на ток не менее 310 мА, а транзисторы оконечного каскада на ток не менее 8,8 А.

Однако не стоит забывать, что реальный усилитель мощности работает на динамическую головку, которая к активному сопротивлению имеет отношение лишь до тех пор, пока диффузор не подвижен. Как только диффузор головки начинает двигаться динамическая головка перестает быть активной нагрузкой, поскольку начинают сказываться и индуктивность катушки и наводимый в этой катушке ток, когда диффузор по инерции продолжает движение. Самый примитивный эквивалент динамической головки представлен на рисунке 14.

Схемы УМЗЧ на транзисторах-14Схемы УМЗЧ на транзисторах-14
Рисунок 14 Эквивалент динамической головки.

Как видно в эквиваленте присутствуют и индуктивность и конденсатор, следовательно в моменты, когда диффузор головки разогнан до максимальной скорости происходит смена полярности выходного сигнала мгновенное значение активного сопротивления нагрузки может уменьшиться — в эквиваленте это будет емкость заряженного конденсатора и само индукция дросселя, причем ОЧЕНЬ сильно, и это только в случае когад акустическая система использует один широкополосный динамик, если же используется многополосная АС то активное сопротивление может уменьшится вплоть до 50% в определенные моменты времени.

Ну а поскольку активное сопротивление уменьшилось, то увеличиваются токи через оконечные транзисторы, естественно увеличивая токи своих баз. Поэтому в данном случае буде целесообразно использовать в качестве драйверов транзисторы с максимальным током коллектора уже не на 310 мА, а на 50% больше, т.е. на 460-500 мА, ну а если уж обращаться к реальным транзисторам, то это будут транзисторы с током коллектора на 1А. Ток коллектора оконечного каскада приобретает величину уже в 13 А, ближайшая стандартная величина 15 А.

Почему не удваивается мощность? Да потому что токи имеют мгновенное значение, а рассеиваемая мощность гораздо более инерционная и получившихся 135 Вт будут вполне достаточно кристалл транзистора не успеет нагреться до критической температуры.

Когда уровень входного напряжения достиг величины 2,5 В (рис 15). В этом случае на выходе усилителя получается максимально возможное напряжение, поскольку Q5 уже вошел в режим насыщения и дальнейшее увеличение входного напряжения не приведет к росту выходного. Если бы это было в усилителе мощности звукового сигнала, то эта ситуация как раз и называется клиппингом.

Схемы УМЗЧ на транзисторах-15Схемы УМЗЧ на транзисторах-15
Рисунок 15 Карта напряжений при входном напряжении 2,5 В.

На что здесь стоит обратить внимание?

Прежде всего на прилагаемые напряжения к транзисторам, отвечающим на усиление отрицательной полу волны. Как видно из карты напряжений в момент, когда на выходе максимально возможное положительное напряжение к транзисторам отрицательной полу волны звукового сигнала прилагается отрицательная полярность источника питания и напряжение подаваемое с открытых транзисторов транзисторов положительной полу волны.

Следовательно транзисторы последнего каскада усилителя напряжения Q5, Q6, транзисторы драйверного каскада Q8, Q9 и транзисторы оконечного каскада Q10-Q13 должны быть рассчитаны на напряжение ни как не меньше 120 В и это только критический минимум, поскольку даже не большое увеличение сетевого напряжения и использовании не стабилизированного источника питания заставит транзисторы работать на технологическом запасе, что сводит схему к схемам пониженной надежности.

Поскольку электросети обещают напряжение в сети 220 В ±7%, а в реальности отклонения могут достигать и 10-15%, вот 15% и следует добавить с минимальному значению напряжения используемых транзисторов, т.е. используемые транзисторы должны быть рассчитаны на 138-140 В.

Открываем даташиты на транзисторы 2SA1943 и 2SC5200, которые используются в оконечном каскаде усилителя ЛАНЗАР и смотрим следующие величины:

  • Максимальный ток коллектор-эмиттер . . . . . . . . . . .15 А
  • Максимальное напряжение коллетор-эмиттер . . . 230 В
  • Тепловая мощность коллектора . . . . . . . . . . . . . . . 150 Вт

Правда там оговорка имеется — тепловая мощность при температуре 25°С и рекомендуемая мощность всего 100 Вт с одного транзистора, но как показывает при хороших теплоотводах в качестве номинальных можно использовать максимальные значения, но об этом немного ниже. В данной же схеме эти транзисторы вполне уместны, имеют довольно приличный запас по току и напряжению, а учитывая довольно большой технологический запас ТОШИБОВСКИХ изделий, в этом усилителе их убить будет довольно сложно.

Открываем даташиты на используемые в качестве драйверного каскада 2SA1930 и 2SC5171

  • Максимальный ток коллектор-эмиттер . . . . . . . . . . . 2 А
  • Максимальное напряжение коллетор-эмиттер . . . 180 В
  • Тепловая мощность коллектора . . . . . . . . . . . . . . . . 20 Вт

Опять же по всем параметрам заложен довольно приличный запас, причем в качестве драйверного могут вполне справиться и более слабые транзисторы 2SA1837 и 2SC4793 током коллектора в 1А и максимальным напряжением 230 В. Так же подойдут транзисторы на 1,5 А 160 В 2SB649A и 2SD669A.

Более подробно о параметрах рекомендуемых для усилителя строения транзисторах можно узнать в справочном листке.

В качестве Q7 можно использовать практически любой транзистор, поскольку протекающий через него ток равен 16 мА, а прилагаемое напряжение не превышает 2-3 В во всех режимах работы. Используемые для этого в ЛАНЗАРЕ BD135 выбраны из за удобства крепления к радиатору и имеющие несколько большую зависимость тока коллектора от температуры, т.е. они гарантировано справятся с возлагаемыми на них функциями.

Выходные транзисторы

В качестве оконечных транзисторов используется 2 пары соединенных параллельно транзистора. Это обстоятельство вносит дополнительные задачи при выборе элементной базы. Прежде всего транзисторы, которые соединены параллельно должны иметь довольно близкие параметры и только в этом случае нагрузка на них будет распределена равномерно и перегрузки одного из транзисторов не произойдет.

Если транзисторы покупаются в разных местах или в разное время, то тут без подбора транзисторов уже не обойтись, еси же покупаются в одном месте и все сразу, то следует обратить внимание на номер партии покупаемых транзисторов — у транзисторов одной структуры номер партии должен быть одинаковым. В этом случае завод-изготовитель гарантирует разброс параметров не более 2%, что вполне достаточно для использования в усилителях с параллельным включением транзисторов.

Номер партии пишется немного ниже и правей наименования транзистора. Так же следует обратить внимание на маркировку — маркировка краской ни фирменных транзисторах не делается уже достаточно давно — все надписи выполнены лазером.

Учитывая популярность своих изделий фирма ТОШИБА начала выпускать транзисторы и n-p-n и p-n-p структур одной партией, т.е. даже в транзисторах разной структуры параметры будут максимально приближены. Вот правда в продаже такие пары встречаются пока не часто (рис 16).

Схемы УМЗЧ на транзисторах-16Схемы УМЗЧ на транзисторах-16
Рисунок 16 Транзисторы расной структуры, но одной партии

Если же нет возможности купить транзисторы одной партии, то тут возникает довльно патовая ситуация с одной стороны нужны транзисторы с максимально похожими характеристиками, с другой — цифровой мультиметр с измерителем h31 для этих целей не подходит, поскольку его измерения производятся в режиме микротоков, а мощные транзисторы в этих режимах имеют коф усиления больше 1000…

Для подбора силовых транзисторов потребуется более серьезное оборудование или два мультиметра — рисунок 17

Схемы УМЗЧ на транзисторах-17Схемы УМЗЧ на транзисторах-17
Рисунок 17 Стенд для отбраковки силовых транзисторов

Для произведения отбраковки следует взять любой транзистор из отбраковываемой партии и переменным резистором выставить ток коллектора равным 0,4…0,6 А для транзисторов предпоследнего каскада и 1…1,3 А для транзисторов оконечного каскада. Ну а далее все просто — к клеммам подключаются транзисторы и по показаниям амперметра, включенного в коллектор выбираются транзисторы с одинаковыми показаниями, не забывая поглядывать на показания амперметра в базовой цепи — они тоже должны быть похожими.

Разброс в 5% вполне приемлем, для стрелочных индикаторов на шкале можно сделать метки «зеленого коридора» во время градуировки. Следует заметить, что подобные токи вызывают не плохой нагрев кристалла транзистора, а учитывая то, что он без теплоотвода длительность замеров не следует растягивать во времени — кнопку SB1 удерживать в нажатом состоянии более чем 1…1,5 сек не следует. Подобная отбраковка прежде всего позволит отобрать транзисторы с реально похожим коэффициент усиления.

Так же следует учитывать, что как бы вы не старались одинаковых транзисторов с теми, что у вас есть вы все равно не найдете, поэтому выбрав максимально похожие имеет смысл увеличить токовыравнивающие резисторы R24-R27 до 1 Ома. Разумеется вы потеряете в КПД, но выиграете по более равномерно распределенной мощности на каждый транзистор.

Резюмируя все выше сказанное можно сделать вывод:

Для данного усилителя мощности для предпоследнего каскада необходимы транзисторы с током коллектора не менее 1 А и напряжением коллектор-эмиттер не менее напряжения между плюсом и минусом двуполярного источника + 10-15% от этого значения. Для оконечного каскада требуется транзистор с током коллектора не менее 25 А или два включенных параллельно транзистора с током коллектора не менее 13 А.

Напряжение коллектор-эмиттер у транзисторов оконечного каскада должно быть такое же как и у транзисторов драйверного каскада. При соединении транзисторов параллельно необходимы транзисторы с идентичными параметрами, особенно по h31 (коф усиления), которое необходимо мереть при токах превышающих 0,1 А, либо использовать транзисторы одной партии. Мощность коллекторов соединенных параллельно транзисторов оконечного каскада должна быть не менее расчетной мощности усилителя при условии хорошего охлаждения кристалла транзистора, которое зависит от типа корпуса.

Последними строчками «О ТРАНЗИСТОРАХ» пожалуй стоит прописать, что с корпусов типа ТО-220 (IRF640-IRF9640) не рекомендуется «брать» более 60-70 Вт с одной пары, с корпусов типа ТО-247 (IRFP240-IRFP9240) не рекомендуется «брать» более 100-110 Вт с одной пары, с корпусов TO-3PBL (TO-264) (2SA1943-2SC5200) не рекомендуется брать более 140-150 Вт с одной пары, с корпусов ТО-204АА (MJ15022-MJ15023) не рекомендуется «брать» более 170-180 Вт с одной пары для широкополосных усилителей. Для сабвуферов приведенные значения могут быть увеличены примерно на 15-20%.

Источник: umz.htm

Каким должен быть хороший усилитель мощности на транзисторах

Феномен транзисторного звучания УНЧ против «тёплого» лампового звука.


История борьбы с феноменом транзисторного звучания уходит в далёкие 80-ые годы.
С появлением продвинутых мощных транзисторных усилителей низкой частоты многих гурманов качественного воспроизведения музыки постигло разочарование — новинки с более высокими электрическими характеристиками никак не могли сравниться со своими ламповыми собратьями по мягкости и естественности звучания. Мало того, по «качеству» звучания они субъективно уступали и стареньким германиевым УМЗЧ, выполненным по канонам простейшей схемотехники, присущей ламповым конструкциям.
Сотни умных разработчиков чесали свои просветлённые репы в надежде хоть как-то снизить тембральные искажения в транзисторных усилителях, меняли схемотехнику и элементную базу, оживлённо гнались за сверхпараметрами, писали разные статьи, пока не поняли, что к цифрам, указанным в характеристиках усилителя надо относиться сдержанно, а верить можно только собственным ушам.
Однако, проиграв глобальную борьбу с лампой за чистоту музыкального звучания УНЧ, обиженные, но не разбитые в пыль транзисторные аудиофилы всё же собрались духом и вынесли на своих плечах ряд постулатов о происхождении в УНЧ пресловутого транзисторного звучания:

1 — Глубокая отрицательная обратная связь, без которой не обходится ни один транзисторный усилитель, порождает переходные искажения, вызванные запаздыванием сигналов в петле обратной связи.
2 — Всё та же глубокая обратная связь обуславливает низкое выходное сопротивление УНЧ. Это, с одной стороны, хорошо, так как повышает коэффициент демпфирования усилителя, но, с другой стороны, чревато возникновением интермодуляционных искажений в динамических головках, что, в свою очередь, вызывает неприятные призвуки, ошибочно принимаемые за искажения усилителя.
3 — Особо продвинутые специалисты упоминают тепловые искажения, которые вызваны скачками мгновенной температуры кристалла транзистора при прохождении сигнала, в связи с изменением рассеиваемой в нем мгновенной мощности. В результате, в процессе усиления музыкального сигнала коэффициент усиления по току (или крутизна) выходных транзисторов плавно (из-за инерции тепловых процессов) изменяется на 20-30%. Эти флуктуации, в свою очередь, становятся причиной инфразвуковых интермодуляционных искажений в УНЧ, к которым ухо слушателя чрезвычайно чувствительно.
4 — Поскольку уравнения, описывающие вольтамперные характеристики полевых транзисторов, практически идентичны ВАХ вакуумных приборов, «правильный» транзисторный УМЗЧ следует реализовывать именно на полевиках.
5 — Не столь важен общий коэффициент нелинейных искажений УНЧ (в ламповых Hi-End системах он часто составляет величину 0,1% и выше), сколь спектр гармоник этих искажений.
«Покажите мне график зависимости коэффициента искажений от частоты, и я скажу, как будет звучать усилитель», — написал Владимир Ламм, основатель и идеолог американской компании, занимающейся разработкой и выпуском звукового оборудования «Lamm Industries».

ИТАК, подытожим всё сказанное:
Идеальный усилитель должен быть построен на полевых транзисторах, иметь неглубокие и максимально короткие обратные связи (в идеале внутрикаскадные), работать в режиме А (для устранения тепловых искажений) и быть однотактным (как обладающий наиболее приятным для уха спектром гармоник выходного сигнала).
Последние 2 пункта скорее применимы для усилителей мощности, работающих при максимальных мощностях до 10Вт. Хотя существуют примеры американских мелкосерийных изделий однотактных транзисторных УНЧ и с выходной мощностью, достигающей 150Вт. Правда весит такой агрегат в одноканальном исполнении ни много ни мало — 70кг…! Поэтому для усилителей, работающих в режиме А и при значительных мощностях, предпочтительными являются всё-таки двухтактные схемы.
Именно такую схему на полевых транзисторах мы рассмотрели на странице ссылка на страницу.

Не так давно я наткнулся на обсуждение темы «Про тёплый ламповый звук». Полемика велась на странице http://www.yaplakal.com/forum7/st/320/topic988477.html и, как это часто водится на любом неспециализированном форуме — никакого особого интереса не представляла… И всё было бы как обычно, если бы не единичный комментарий товарища по имени «aleks49».
Поскольку связаться с уважаемым «aleks49» мне не удалось, а мысли, изложенные в комментарии, были хороши: как по форме, так и по содержанию, то «не пропадать же добру», — подумал я и решил привести написанный им материал на этой странице — в полном объёме и авторском изложении.


«Итак:
Попытаюсь вставить свои 5 копеек. Может быть, мои наработки и наблюдения кому-то помогут правильно сориентироваться.
Дело в том, что я всю свою трудовую деятельность занимался ремонтом и настройкой всякой электронной, электромеханической и механической техники.
Так как это было оборонное предприятие мелкосерийной продукции, то разнообразие было очень широким.
Образование у меня специфическое — спец. училище подводного плавания радиолокационные и телевизионные системы. 8 лет службы на подводных лодках по специальности. В процессе службы так же 2 раза проходил специальную подготовку по быстрому поиску неисправностей в аппаратуре моей сферы деятельности.
Работая на «гражданке» в моих возможностях было использование любых лабораторных средств контроля и испытаний электронного оборудования. Эта преамбула нужна для того, чтобы те, кто будет мне оппонировать, могли ориентироваться в какие «дебри» может зайти разговор.
Продолжаю. В 70-е я увлёкся разработкой УНЧ. И к 1979 году, повторив большое количество распространённых на то время схем, пришёл к выводу, что транзисторные усилители, построенные по схемотехнике операционного усилителя с глубокой обратной связью, сильно грешат качеством звуковоспроизведения. Несмотря на низкие нелинейные искажения (измерялось измерителем нелинейных искажений) качество звука чем-то страдало. Получалась «каша» на звуке где звучат много различных инструментов. Некоторые инструменты даже в сольном исполнении с трудом узнаются. Никакие эквалайзеры не помогают.
Более тщательное исследование явления с помощью специализированного осциллографа (очень древний, ламповый, низкочастотный с высокой чувствительностью) обнаружило, что виной всему очень большое усиление исходных схем с разорванной общей обратной связью.
Действительно, такие схемы обладали таким же громадным коэффициентом усиления, как и интегральные ОУ. С помощью общей обратной связи усиление доводилось до нужного уровня и нелинейность устранялась. Но даже усилители с КНИ 0,01% и ниже при этом не удовлетворяли по звучанию. То, что в этом виноват именно транзисторный УНЧ не вызывало сомнений. На тех же акустических системах звучание от ламповых усилителей воспринималось лучше (имелись в наличии два ламповых советских усилителя на 50 и 100W).
Измерение КНИ показало, что ламповые УНЧ оказались совсем неидеальнами. КНИ у них достигал 1%.
В чём же дело? Работа с хорошим (правильным) осциллографом показала, что транзисторные УНЧ легковозбудимы. Так называемая нулевая точка на выходе совсем не нулевая. На уровне в несколько милливольт там присутствует хаотический колебательный процесс, который превращается в ВЧ генерацию при подаче на вход УНЧ даже самого маленького сигнала. В некоторых случаях эта генерация не превышает нескольких милливольт, а частенько бывает на весь размах напряжения питания.
Таким образом, если на вход УНЧ подавать синусоидальный сигнал то в «нулевой» точке это обнаруживается. Если подавать импульсный сигнал, то фронт импульса искажён выбросом. Частота этой генерации на уровне максимальной частоты выходных транзисторов УНЧ. Ко всему прочему выяснилось, что общая обратная связь обладает существенной задержкой. Задержку можно определить с помощью измерения единичного коэффициента усиления усилителя с разомкнутой обратной связью.
С хорошими высокочастотными транзисторами это может доходить до 100 и даже 200 кГц.
Итого, если усилитель без обратной связи способен усиливать сигнал до 100 кГц то задержка будет составлять 10 микросек. До появления обратной связи на выходе усилителя наблюдается размах выходного сигнала равный всему напряжению питания выходного каскада. При этом имеется ещё дополнительный выброс на переднем фронте. Через 10 микросекунд «срабатывает» обратная связь и с затухающим колебательным процессом сигнал опускается на уровень, который определён обратной связью.
Всё это можно увидеть с помощью хорошего осциллографа и присутствует на любом сигнале с любой звуковой частотой. На предельных для данного усилителя частотах присутствуют очень замысловатые виды искажений.

Вывод.
Виновата схемотехника построения УНЧ. Нельзя рассматривать УНЧ как операционный усилитель. Специфические искажения операционного усилителя улавливаются слуховым аппаратом человека.
Как с этим бороться? Полностью отказаться от схемотехники операционного усилителя при использовании в качестве УНЧ. Для УНЧ низкого класса можно это использовать и даже применять интегральные ОУ, но выходной каскад такого ОУ должен обладать большим током покоя. Таких ОУ почти не выпускают. Так называемые микромощные ОУ, хотя и обладают большой единичной частотой, но выход в покое микротоковый.
Ламповая схемотехника подсказала выход. В силу специфики ламп (они обладают невысокими показателями усиления и требуют для питания много энергии) не применяется излишнее усиление с последующим охватом общей обратной связью. В лампах используется довольно высокое анодное напряжение, что обусловливает очень протяжённую вольт-амперную характеристику. Перегрузка лампы тоже имеет протяжённую характеристику.
Одна из особенностей лампы состоит в том, что и нелинейность у неё несколько иная, чем у транзистора.
Здесь уже нужно сравнивать лампу с транзистором с помощью измерения образующихся при усилении гармоник.
В ламповом усилительном каскаде чётные гармоники на 5-8 децибелл выше по уровню, чем нечётные. Причём существенное значение имеют только 2-я и 3-я гармоники. Остальные ниже на 20-30 дб. и могут не учитываться.
В транзисторном усилителе на биполярном транзисторе 3-я гармоника выше, чем 2-я на 5 дб. но также существенна ещё и 5-я гармоника.
На полевых транзисторах 2-я и 3-я гармоники примерно равны и 5-я гармоника не имеет существенного значения.
Каскады усиления, построенные для увеличения токовой нагрузки(катодные повторители, истоковые повторители, эмиттерные повторители) не вносят заметных искажений в сигнал.
Что можно предпринять для высококачественного усиления.
1. Входные каскады УНЧ необходимо строить на полевых транзисторах и лампах для того, чтобы изначальный сигнал на малых уровнях не приобрёл неисправимых искажений.
2. Максимальное усиление по напряжению на один каскад не должно превышать 30.
3. Не охватывать обратной связью даже 2 каскада. Обратная связь должна существовать только на одном усилительном элементе (лампа, транзистор). Всякие новомодные усилительные микросхемы не должны рассматриваться как единый усилительный элемент.
4. Усиление сигнала необходимо разделить на две функции: усиление по напряжению и усиление по току. После усиления по напряжению необходимо обязательно повторителем разгрузить каскад.
5. Между каскадами усиления напряжения и разгрузкой разделительные конденсаторы применять не нужно, а при усилении напряжения конденсаторы ставить нужно, чтобы вывести рабочую точку лампы или транзистора на линейный рабочий участок.
6. Для усилительных каскадов, работающих с сигналами близкими к 1 вольту, использовать транзисторы с большим напряжением и задавать питание близкое к предельному. Именно таким образом удаётся растянуть вольт-амперную характеристику транзистора и получить большой динамический диапазон.
7. Не сдваивать полевые транзисторы во входных каскадах УНЧ. Иногда применяется такое для уменьшения коэффициента шума. Но такое решение приводит к увеличению нелинейности вольт-амперной характеристики и растёт 3-гармоника. В результате по гармоникам полевой транзистор становится ближе к биполярному.
8. Применять каскодные схемы в анод для ламп и в коллектор для транзисторов. Каскоды через катод или эмиттер не применять т.к. КНИ при этом возрастает сразу до 0,2%.

Существует проблема фазоинверторов. Как получить противофазные сигналы с минимумом нелинейных искажений?
В дифкаскаде плечи оказываются по характеристикам разные и по усилению, и по нагрузочной способности и по нелинейности. Разгружать дифкаскад лучше всего истоковыми повторителями. И вообще любые каскады усиления напряжения разгружать истоковыми повторителями.
Вот те основы схемотехники, которые позволяют получить усиление звука с высокой верностью.

Мои соображения по поводу «мягкого лампового звука».
Лампа великолепный усилительный прибор для усиления звука и усилители на лампах за счёт растянутой характеристики показывают хороший результат. Но это не значит, что транзистор не способен конкурировать качеством звука.
В своё время в 1979 году мне удалось сделать усилитель с качеством звука, не отличимым от лампового. Тогда я применил технологии, которые перечислил текстом выше.
Получился усилитель без общей обратной связи с КНИ до 0,4% который не возможно было отличить по звучанию от лампового. Было изготовлено несколько штук разных по назначению УНЧ. Для домашнего использования до 30W и концертного использования до 100W причём для акустических систем с сопротивлением 16 ом и выше.
Качество звука оценивалось и сравнивалось работниками музыкальной культуры и лабухами, работающими по свадьбам и т.п. Для сравнения использовались имевшиеся в то время кинотеатральные профессиональные системы на транзисторах с выходными трансформаторами. Выходные трансформаторы никакого преимущества в усилителях на транзисторах не продемонстрировали. Разве только то, что могли согласовать выход усилителя с высокоомной акустикой. Но в случае с изготовленным усилителем, где применялось высокое напряжение питания и высоковольтные транзисторы, по мощностным параметрам он не уступил трансформаторным даже на высокоомной нагрузке. По качеству звука все участвующие отметили «чистоту» звука предъявленного УНЧ. Причём не возникло даже никаких ни у кого сомнений. Оказалось хорошее качество работы: как с микрофоном, так и с гитарами. Для Бас-гитары делали специальный усилитель с ограниченным диапазоном вверх и расширением вниз диапазона.
Усилители, которые делал я и мои соратники, по этому делу изготовлялись варварским способом, т.к. не было времени и денег оформлять конструкции в приличную форму. Распаивалось на «слепышах» обычными проводами, имевшимися под рукой. Под рукой тогда имелось большое количество провода МГШВ. Это многожильный провод в шёлковой и виниловой изоляции. Паялось внахлёст, межплатные соединения по месту.
Источники питания самые простецкие трансформаторы, диоды, электролиты. Платы обклеивались изолентами и полиэтиленом, иногда газетами или упаковочной бумагой. Всё обматывалось, чтобы нигде не замыкало. Коробку применяли от какого-нибудь прибора с заводской свалки. Всё уминалось и затискивалось. Имелись снаружи только сетевой шнур, тумблер включения, предохранители, регулятор уровня сигнала, регулятор громкости с тонкорректором, гнёзда для входа и выхода. Регулятор громкости был электронным своей конструкции. Для тон-коррекции применялись дроссели (сейчас никто такого не применяет).
Никаких регуляторов тембра не применялось. Как оказалось для хорошего усилителя они не нужны т.к. при использовании дома имеется уже нормализованная запись с винила или магнитофона. Никакой необходимости что-то менять в частотах не возникало.
Выходной каскад усилителя имел защиту от перегрузки по току на максимальный ток используемых транзисторов.
Входной усилитель делался на лампе 6Н16Б или 6Н23П и работал при напряжении 30В. В аноде стоял каскод на транзисторе (динамическая нагрузка), транзистор был германиевый. Разгрузка была эмиттерным повторителем на транзисторе П307. Далее стоял регулятор громкости с тон-корректором. Тон-корректор была возможность отключать. Регулятор громкости не был переменным резистором. Были три кнопки. Больше, меньше и вкл-откл тонкорректора. Схема на полевых транзисторах, максимальный уровень сигнала для такого регулятора 30мВ. Поэтому чувствительность усилителя была 30мВ. Именно при таком сигнале на входе выход получался на максимальную мощность. Внутри усилителя мощности между каскадами стояли фильтры НЧ. Частоты выше 30кГц обрезались, хотя без фильтров характеристика была линейна до 200кГц.
К чему я это рассказываю?
За всё время УНЧ творчества никогда и ни у кого не возникало даже мысли, что нужны какие-то особые провода, что провода нужно ориентировать в пространстве, что конденсаторы должны быть из меди или золота. Применялись обычные малогабаритные бумажные конденсаторы. Мощность сигнала в межкаскадных передачах мизерная, это не силовые элементы. У кондёра есть ёмкость, ТКЕ и утечка. Больше для него ничего не надо. В силовых цепях да! В силовых цепях важно ещё максимальный ток заряда-разряда. Иначе пластины отлетают.
Что касается «теплоты» звука, хочу обратить внимание на следующее. Лампоголики утверждают, что питание для ламп обязательно должно быть кенотронное, иначе звук становится неламповый. Я верю, что это действительно так. Дело в том, что кенотроны характеризуются током насыщения, что приводит к тому, что анодное напряжение слегка проседает при больших сигналах, а крутизна характеристики лампы зависима от анодного напряжения. Поэтому и появляется «мягкость» звучания. По всей видимости, это можно создать и в транзисторных каскадах. Но транзисторные каскады позволяют получить КНИ ниже, чем в лампах, с нечётными гармониками можно тоже побороться и получить приемлемый уровень. С шумами, конечно лампу не победить, но выйти на уровень когда они ниже порога слышимости — возможно.
Во всяком случае, в тех усилителях, что я делал, шумы на слух не обнаруживались. Никакого шипенья или шелеста. С гармониками та же история. 3-я гармоника всегда в транзисторных усилителях будет больше, чем в ламповых, но это примерно на 5 дб. Если же динамический диапазон усилителя сохраняется свыше 70 дб. то эту гармонику можно обнаружить только по прибору и никак не обнаружить прослушиванием. Если же транзисторный усилитель без общей ОС даёт КНИ 0.01% на малой и средней громкости (до 10W мощности), то такой усилитель значительно качественнее лампового. Опустить выходную лампу по КНИ ниже 0,2 задача очень сложная и потребует подспорья в виде добавок из транзисторов. В итоге мы опять вернёмся к вопросу — где транзисторное, а где ламповое.
Во входных каскадах лампа непревзойдённа из-за своей высоковольтности при милливольтных сигналах.
Хочу ещё отметить, что УНЧ на транзисторах без ОС тоже обладает мягкостью звучания и чёткостью звуковой картины, как и ламповые. Проблема только в том, что этот звук мало кто слышал. Только народные умельцы и их окружение».

Это сообщение отредактировал aleks49 — 12.01.2017 — 21:47


 

Усилитель на транзисторах 2N3055 — Усилители на транзисторах — Звуковоспроизведение

Жан Цихисели

Как показала практика прослушивания, наилучшим звучанием обладают транзисторные усилители с использованием межкаскадных, согласующих трансформаторов, построенные с применением однотактных каскадов предусиления.
В предыдущей конструкции усилителя на транзисторах П210, согласующий трансформатор работает с подмагничиванием.
В каждом случае есть свои достоинства и недостатки.
В схемах, где трансформатор работает без подмагничивания, с одной стороны это увеличивает индуктивность обмоток и расширяет частотный диапазон, с другой стороны трансформатор с подмагничиванием обладает большей детальностью в звучании, поскольку при правильном выборе режимов, работает на более менее линейном участке кривой намагничивания.
Заранее сказать что будет лучше очень непросто.
В предлагаемом усилителе на кремниевых транзисторах 2N3055, согласующий трансформатор работает без подмагничивания.

Транзисторы 2N3055.

Частотная характеристика предлагаемого усилителя линейна от 20 до 50000 Гц. Схема разработана еще в 50-е годы прошлого века.
Моя многолетняя практика показала, что наилучшим звучанием обладают как раз усилители, собранные по простой, классической схемотехнике при соответствующей реализации. Подобная схемотехника очень надежна.
Например в приведенной схеме даже нет необходимости в дополнительной термо-стабилизации.

Схема усилителя.

Все печатные платы, на мой взгляд ухудшают звучание усилителя, поэтому печатные платы для этого усилителя не разрабатывались.
Платы  здесь изготовлены из не фольгированного стеклотекстолита, монтаж выполнен луженым моножильным проводом. Один виток вокруг детали, пайка и далее.
Резисторы применённые при сборке усилителя ВС, УЛИ, БЛП. На мой взгляд резисторы ВС, УЛИ, БЛП — обеспечивают наилучшее качество звучания, как в транзисторных, так и в ламповых схемах. Добавлю,что при минималисткой схемотехнике и в транзисторных усилителях ощутимо заметно применение качественных резисторов.

Усилитель, монтаж.

А из резисторов, относительно недорогих и доступных можно было бы рекомендовать еще С2-29 и ПТМН.
Необходимо добавить, что при нагрузке 4 ом выходной конденсатор должен иметь номинал 4700мк на 50в.
При применении фазо-инверсного трансформатора надобность в комплементарных транзисторах отпадает.
С таким же успехом схему можно реализовать с минусовым питанием, используя в качестве выходных транзисторов MJE2955, драйвер TIP31С, входной транзистор BD140.
Вообще схема универсальна. При соответствующих расчетах, на мой взгляд будет интересен вариант П4Б выходные, П203 драйвер, ГТ404Г входной.

-возможно ли применить в усилителе выходные транзисторы 2Т803А или 2Т808А?

Транзисторы 2Т808А отечественный аналог 2N3055, но у 2N3055 h31 больше. С подбором по максимальному h31, вполне возможно.
Согласующий трансформатор выполнен на жепезе Ш20 на 20 и мотается в 4 провода одновременно и содержит 270 витков.
Нижнее плечо 270 витков, соединяется последовательно с верхним плечом 270 витков. В сумме  получается 540 витков. Это будет первичная обмотка.
Две оставшиеся по 270 витков, это вторичная обмотка, которая соединяется с выходными транзисторами.
Сборка  сердечника — в перекрышку. Диаметр провода 0,5 мм. Железо полно-размерное (окно 20 мм).
Для тех, кто испытывает трудности с намоткой в четыре провода, трансформатор может быть выполнен иначе:
Сначала наматывается 270 витков. Затем в два провода 270 витков. Далее снова 270 витков.
Выходные транзисторы должны быть подобраны в пару. Используется прибор Л2-23 либо ППТ.

 

Однотактный усилитель Хьюстона класса А на 2SK1058 MOSFET-е. ZCA — усилитель без деталей


Мне захотелось построить усилитель со следующими параметрами:
1. Без ООС, так называемый вариант «0-NFB» (zero negative feed back)
2. Чистый класс А
3. Однотактный
Нельсон Пасс (Nelson Pass) проделал огромную работу в этом направлении при строительстве своего усилителя «Zen», но я решил пойти еще дальше! Я построю «Усилитель Без Деталей» — Zero Component Amplifier (ZCA).
smile
Думаете, я пытался найти «Священный Грааль» в усилительной схемотехнике, этакий прямой кусок серебрянного провода, дающий чистое усиление без искажений?

Содержание / Contents

Несомненно, чтобы усилитель назывался усилителем, он должен содержать активные компоненты, обеспечивающие усиление. Меня всегда восхищали однотактные ламповые усилители. Как такое вообще возможно? Посмотрите, одна лампа, пара резисторов и выходной трансформатор. Поэтому я и решил создать усилитель на полевом транзисторе, придерживаясь такой же простоты дизайна.

Один канальный полевой униполярный МОП-транзистор, пригодный для аудио, парочка резисторов и конденсаторов, и конечно же умощненный хорошо «профильтрованный» блок питанния. Схема такого усилителя представлена на рис. 1.

Однотактный усилитель Хьюстона класса А на 2SK1058 MOSFET-е. ZCA — усилитель без деталей
Рис. 1: Схема однотактного усилителя класса A на MOSFET-е

Применен полевик 2SK1058 от Hitachi. Это N-канальный MOSFET. Внутренняя схема и распиновка для 2SK1058 представлена на рис. 2.

Однотактный усилитель Хьюстона класса А на 2SK1058 MOSFET-е. ZCA — усилитель без деталей
Рис. 2: Hitachi 2SK1058 N-Channel MOSFET

Я использовал конденсаторы Sprague Semiconductor Group во входных цепях и большие электролиты на выходе с «бутербродом» из полиэстерного конденсатора на 10 мф. Все резисторы, если не указано иначе, на 0,5 Ватт. Четыре 10-ти Ваттных проволочных резистора работают в качестве нагрузки. Внимание, эти резисторы рассеивают около 30 Ватт и становятся чрезвычайно горячими даже при простое усилителя.

Да, это класс А, а низкий КПД — расплата. Он съедает 60 Ватт, чтобы выдать ок. 5Вт! Мне пришлось использовать мощный и качественный радиатор с эффективным теплоотведением (0.784 °C/Ватт).

Однотактный усилитель Хьюстона класса А на 2SK1058 MOSFET-е. ZCA — усилитель без деталей
Фото 1: Печатная плата усилителя в сбореБлок питания состоит из трансформатора мощностью 160 Ватт, нагруженного на 25-ти Амперный выпрямительный мост, и обеспечивает напряжени ок. 24 Вольт. Используется П-образный фильтр (конденсатор — дроссель — конденсатор) состоящий из электролитов на 10.000 Мф и 5-ти Амперных дросселей индуктивностью 10 мГн.
Однотактный усилитель Хьюстона класса А на 2SK1058 MOSFET-е. ZCA — усилитель без деталей
Рис. 3: Схема блока питанияОднотактный усилитель Хьюстона класса А на 2SK1058 MOSFET-е. ZCA — усилитель без деталей
Фото 2: Усилитель в сбореОднотактный усилитель Хьюстона класса А на 2SK1058 MOSFET-е. ZCA — усилитель без деталей
Фото 3: Усилитель в сборе, вид сзадиСмещение задаётся резистором на 1 мОм и потенциометром на 100 кОм. Просто установите потенциометром половину напряжения питания в точке соединения MOSFET-а и нагрузочного резистора.Я прослушивал мой усилитель с ламповым предусилителем на 12AU7, т. к. он обеспечивает наиболее чистый звук. Я понятия не имею об коэффициентах искажений этого усилителя и т. п. цифрах, лишь скажу, что у него точная звукопередача и деликатно текстурированный тембральный окрас.

Для работы с усилителем требуется высокочувствительная, эффективная аккустика, т. к. он выдаёт ок. 5 Ватт RMS (и до 15 Ватт на пиках, что я ясно наблюдал на экране осциллографа). Передача басса оказалась значительно лучшей, чем можно было ожидать от такого решения.
Усилитель с легкостью раскачивает мои 12-ти дюймовые трех-полосные колонки.

Усилитель удался. Конечно, не совсем «без деталей», но очень близко! Один 18-ти баксовый полевик надрывает задницу, чтобы подарить Вам офигенное впечатление от прослушивания. Не просите от него больше, чем ожидали.

Усилитель воспроизводит все аккустические инструменты с несравненным натуралистичным качеством.
Простое джазовое трио, классический квартет или нежный мужской/женский вокал показывают то, для чего этот усилитель и был сделан — красоту!

• Чувствительность усилителя по входу низкая, около 2 Вольт. Если такого источника у вас нет, то предусилитель НЕОБХОДИМ. Любой, с выходом 1-2 Вольта.

• Используйте чувствительные АС 5-10 Вт с легкими (бумага, волокна и пр.) диффузорами, как для ламповых усилителей небольшой мощности.

• Оригинальный транзистор 2SK1058 найти нынче практически невозможно. У китайцев сейчас есть предложения по 2SK1058, вот только гарантий, как обычно, нет. Можно получить битые, перемаркированные, отбракованные или вполне здоровые.
Можно и нужно пробовать, но на свой риск.
Обратие внимание на корпус 2SK1058 (см. выше в статье), он очень своеобразный, часть объявлений по фоткам сразу можно исключить.

Пробуйте разные варианты, сравнивая параметры в датащитах, ищите доступный транзистор с подобными параметрами. И даже пробуйте просто на слух.
За неимением 2SK1058, по при большом желании, люди собирают на неподходящих IRF530, IRF540, IRF610 и пр.

Всем Доброй Удачи!
Игорь

Камрад, смотри полезняхи!

Однотактный усилитель Хьюстона класса А на 2SK1058 MOSFET-е. ZCA — усилитель без деталей

Игорь Котов (Datagor)

Россия, Сибирь, г.Новокузнецк

Основатель, владелец и главный редактор Журнала практической электроники datagor.ru.
Founder, owner and chief editor of datagor.ru.

 

Мощный германиевый усилитель — Усилители на транзисторах — Звуковоспроизведение

Жан Цихисели

Типичные ошибки при конструировании германиевых усилителей, происходят из за желания, получить от усилителя широкую полосу пропускания, малые искажения и т.д.
Привожу схему моего первого германиевого усилителя, спроектированного мной в 2000г.
Хотя схема вполне работоспособна, её звуковые качества оставляют желать лучшего.

Схема первого усилителя..

 

Практика показала, что применение дифференциальных каскадов, генераторов тока, каскадов с динамической нагрузкой, токовых зеркал и других ухищрений с ООС не всегда приводят к желаемому результату, а иногда просто ведут в тупик.
Наилучшие практические результаты для получения высокого качества звучания, дает применение однотактных каскадов пред. усиления и использование меж-каскадных согласующих трансформаторов.
Вашему вниманию представлен германиевый усилитель с выходной мощностью 60 Вт, на нагрузке 8 Ом. Выходные транзисторы используемые  в усилителе П210А, П210Ш. Линейность 20-16000гц.
Субъективной нехватки высоких частот практически не ощущается.
При нагрузке 4ом усилитель выдает 100вт.

Схема усилителя на транзисторах П-210.

 

Усилитель питается от не стабилизированного, блока питания с выходным, двух-полярным напряжением +40 и -40 вольт.
На каждый канал, применяется отдельный мост из диодов Д305, которые устанавливаются на небольшие радиаторы.
Конденсаторы фильтра, желательно применять не менее 10000мк в плечо.
Данные силового трансформатора:
-железо 40 на 80. Первичная обмотка содержит 410 вит. провода 0,68. Вторичная по 59 вит. провода 1,25, намотанных четыре раза (две обмотки — верхнее и нижнее плечо одного канала усилителя, оставшиеся две — второго канала)
.Дополнительно по силовому трансформатору:
железо ш 40 на 80 от блока питания телевизора КВН. После первичной обмотки устанавливается экран из медной фольги. Один незамкнутый виток. К нему припаивается вывод который затем заземляется.
Можно использовать любое, подходящее по сечению ш железо.
Согласующий трансформатор выполнен на железе Ш20 на 40.
Первичная обмотка разделена на две части и содержит 480 вит.
Вторичная обмотка содержит 72 витка и мотается в два провода одновременно.
Сначала наматывается 240 вит первичкм, затем вторичка, затем снова 240 вит первички.
Диаметр провода первички 0,355 мм, вторички 0,63 мм.
Трансформатор собирается в стык, зазор — прокладка из кабельной бумаги примерно 0,25 мм.
Резистор 120 Ом включен для гарантированного отсутствия самовозбуждения при отключенной нагрузке.
Цепочки 250 Ом +2 по 4.7 Ом, служат для подачи начального смещения на базы выходных транзисторов.
С помощью подстроечных резисторов 4,7 Ом, устанавливается ток покоя 100ма. На резисторах в эмиттерах выходных транзисторов 0,47 Ом, должно при этом быть напряжение, величиной 47 мв.
Выходные транзисторы П210, должны быть при этом, практически едва теплые.
Для точной установки нулевого потенциала, резисторы 250 Ом, должны быть точно подобраны ( в реальной конструкции состоят из четырех резисторов по 1 кОм 2вт).
Для плавной установки тока покоя, используются подстроечные резисторы R18, R19 типа СП5-3В 4,7 Ом 5%.
Внешний вид усилителя сзади, изображен на фотографии ниже.


— Можно узнать Ваши впечатления от звучания этого варианта усилителя, в сравнении с предыдущим безтрансформаторным вариантом на П213-217?

Еще более насыщенное сочное звучание. Особо подчеркну качество баса. Прослушивание проводилось с открытой акустикой на динамиках 2А12.

— Жан, а все таки почему именно П215 и П210, а не ГТ806/813 в схеме стоят?

Внимательно посмотрите параметры и характеристики всех этих транзисторов, я думаю Вы все поймете, и вопрос отпадет сам собой.
Отчетливо осознаю желание многих, сделать германиевый усилитель более широкополосным. Но реальность такова, что для звуковых целей многие высокочастотные германиевые транзисторы не совсем подходят. Из отечественных могу рекомендовать П201, П202, П203, П4, 1Т403, ГТ402, ГТ404, ГТ703, ГТ705, П213-П217, П208, П210. Метод расширения полосы пропускания — применение схем с общей базой, или использования импортных транзисторов.
Применение схем с трансформаторами, позволило добиться отличных результатов и на кремнии. Разработан усилитель на 2N3055.
Поделюсь в ближайшее время.

— А что там с «0» на выходе? При токе 100 мА трудно верится, что его удастся удержать в процессе работы в приемлемых +-0.1 В.
В аналогичных схемах 30-и летней давности (схема Григорьева), это решается либо «виртуальной» средней точкой либо электролитом:

Усилитель Григорьева.

Нулевой потенциал удерживается в указанном Вами пределе. Ток покоя вполне можно делать и 50ма. Контролируется по осциллографу до исчезновения ступеньки. Больше нет необходимости. Далее, все ОУ легко работают на нагрузку 2ком. Поэтому особых проблем согласования с CD нет.
Некоторые высокочастотные германиевые транзисторы требуют внимания и дополнительного изучения их в звуковых схемах. 1Т901А, 1Т906А, 1Т905А, П605-П608, 1ТС609, 1Т321. Пробуйте,нарабатываете опыт.
Иногда происходили внезапные отказы транзисторов 1Т806, 1Т813, поэтому могу рекомендовать их с осторожностью.
Им надо ставить «быструю» защиту по току, рассчитанную на ток больший максимального в данной схеме. Чтобы не было срабатывания защиты в нормальном режиме. Тогда они работают очень надёжно.
Добавлю свою версию схемы Григорьева

Версия схемы усилителя Григорьева.

Подбором резистора с базы входного транзистора устанавливается половина напряжения питания в точке соединения резисторов 10ом. Подбором резистора параллельно диоду 1N4148, устанавливается ток покоя.

— 1. У меня в справочниках Д305 нормированы на 50в. Может безопаснее применить Д304? Думаю 5А — достаточно.
— 2. Укажите реальные h31 для приборов установленных в этом макете или их минимально-требуемые значения.

Вы совершенно правы. Если нет необходимости в большой мощности. На каждом диоде напряжение составляет около 30 В, так что проблем с надежностью не возникает. Применены были транзисторы со следующими параметрами; П210 h31-40, П215 h31-100, ГТ402Г h31-200.

 

Отправить ответ

avatar
  Подписаться  
Уведомление о