Сверлильный станок ЧПУ для плат из палок и саморезов

Не так давно мелькал тут обзор драйвера для шаговика, чувак изящно смастерил все без применения микроконтроллера. Почитал я это, глянул на свое сверлило для плат с тугой ручной подачей, и решил нацепить на него управление подачей вверх-вниз. Был куплен драйвер для шаговика, из закромов был вытащен подходящий шаговик от принтера, был куплен дорогущий кулачковый патрон, который я насадил на вал движка от какого то принтера, потом пришел драйвер и движуха началась.

Вот первая версия моего платосверлила:

люди с инженерным мышлением сразу заметят наркоманское положение рычага относительно направляющих (шиссот рублев за латунную трубку, и еще столько же за латунный стержень! да луше б я в китае купил линейние подшипники и две направляющих), из-за такого решения шпиндель ходит неравномерно, рывками, и можно переломать некоторое количество сверел, если они из твердосплава. А ради них все собственно и затевалось.

Пока ждал железо, замутил могучую подсветку для этого станка


прибор говорит что ОЧЕНЬ ЯРКО. Но работать комфортно, регулировку подсветки решил не делать

вот фото в работе

Начал пилить привод оси У. Решил просто добавить немного деревяшек к существующей конструкции

Обратите внимание на нанотехнологичное соединение вала с ходовым винтом

Для этого был куплен датчик стопсигнала от ваза какого то, и безжалостно раздолбан, чтобы осталась только латунная трубка

Настала очередь электроники.

Поигрался в протеусе и на макетке со схемой и кодом, и вытравил плату для будущего контроллера

В качестве мозгов станка выступит ардуино нано, ибо кодить для чего-то более серьезного я не могу. Управление при помощи потенциометра и энкодера с кнопкой.
Сам драйвер называется в интернете EASY DRIVER, что как бы говорит о простоте работы с ним. Это верно. Ему нужно два сигнала — STEP и DIR. Первым мы шагаем движком, вторым говорим, в какую сторону шагать. После пробы топорной библиотеки для него я решил написать всё сам, получилось в итоге неплохо.
Питается это всё от ноутбучного блока питания на 19 вольт. Драйвер может пропустить через себя до 30 вольт, а мотор с патроном рассчитан на 24, если не ошибаюсь, оборотов у него все таки маловато.

Видео первого теста:

Энкодером можно двигать шпиндель вверх-вниз по оси У, переменный резистор задает расстояние, на которое шпиндель сдвинется за один щелчок энкодера, а так же задает скорость подачи при нажатии кнопки «СВЕРЛИТЬ!» Очень удобно оказалось использовать заранее подготовленный алгоритм проделывания отверстия. Так же для понта приделал валявшийся дисплей. Подключил его с помощью вот такого адаптера i2c? чтобы сэкономить ноги ардуины

Прикрутил все платы и ручки на места, и вот что получилось:

Помучившись с кодом заставил все это работать как мне нужно, и вот готовое устройство.

Теперь осталось надумать новый безумный проект, чтобы опробовать свое поделие в боевых условиях, а так же приделать педаль, чтобы освободить руки.
Если кого что заинтересовало в обзоре, спрашивайте, личка, комменты, как угодно

Буратор. Сверлильный станок для печатных плат / MakeItLab corporate blog / Habr

Здравствуйте! На этом ресурсе много людей, которые занимаются электроникой и самостоятельно изготавливают печатные платы. И каждый из них скажет, что сверление печатных плат это боль. Мелкие отверстия приходится сверлить сотнями и каждый самостояльно решает для себя эту проблему.

В этой статье я хочу представить вашему вниманию открытый проект сверлильного станка, который каждый сможет собрать сам и ему не потребутся для этого искать CD-приводы или предметные столы для микроскопа.


Описание конструкции


В основе конструкции довольно мощный 12ти вольтовый двигатель из Китая. В комплекте с двигателем они продают еще патрон, ключ и десяток сверел разного диаметра. Большинство радиолюбителей просто покупают эти двигатели и сверлят платы удерживая инструмент в руках.

Я решил пойти дальше и на его основе сделать полноценный станок под подобные двигатели с открытыми чертежами для самостоятельного изготовления.


Для линейного перемещения двигателя я решил использовать полированные валы диаметром 8мм и линейные подшипники. Это дает возможность минимизировать люфты в самом ответственном месте. Эти валы можно найти в старых принтерах или купить. Линейные подшипники также широко распространены и доступны, так как применяются в 3D-принтерах.


Основная станина сделана из фанеры толщиной 5мм. Фанеру я выбрал потому, что она стоит очень дешево. Как материал, так и сама резка. С другой стороны ничего не мешает (если есть возможность) просто вырезать все те же самые детали из стали или оргстекла. Некоторые мелкие детали сложной формы напечатанны на 3D-принтере.

Для поднятия двигателя в исходное положение использованы две обычные канцелярские резинки. В верхнем положении двигатель сам отключается при помощи микропереключателя.

С обратной стороны я предусмотрел место для хренения ключа и небольшой пенал для сверел. Пазы в нем имеют разную глубину, что делает удобным хранение сверел с разным диаметром.


Но все это проще один раз увидеть на видео:

На нем есть небольшая неточность. В тот момент мне попался бракованный двигатель. На самом деле от 12В они потребляют на холостом ходу 0,2-0,3А, а не два, как говорится в видео.

Детали для сборки


  1. Двигатель с патроном и цангой. С одной стороны кулачковый патрон это очень удобно, но с другой он гораздо массивнее цангового зажима, то есть часто подвержен биениям и очень часто их приходится дополнительно балансировать.
  2. Фанерные детали. Ссылку на файлы для лазерной резки в формате dwg (подготовлено в NanoCAD) можно будет скачать в конце статьи. Достаточно просто найти фирму, которая занимается лазерной резкой материалов и передать им скачанный файл. Отмечу отдельно то, что толщина фанеры может меняться от случая к случаю. Мне попадаются листы которые немного тоньше 5мм, поэтому пазы я делал по 4,8мм.
  3. Напечатанные на 3D-принтере детали. Ссылку на файлы для печати деталей в stl-формате можно будет также найти в конце статьи
  4. Полированные валы диаметром 8мм и длиной 75мм — 2шт. Вот ссылка на продавца с самой низкой ценой за 1м, которую я видел
  5. Линейные подшипники на 8мм LM8UU — 2шт
  6. Микропереключатель KMSW-14
  7. Винт М2х16 — 2шт
  8. Винт М3х40 в/ш — 5шт
  9. Винт М3х35 шлиц — 1шт
  10. Винт М3х30 в/ш — 8шт
  11. Винт М3х30 в/ш с головкой впотай — 1шт
  12. Винт М3х20 в/ш — 2шт
  13. Винт М3х14 в/ш — 11шт
  14. Винт М4х60 шлиц — 1шт
  15. Болт М8х80 — 1шт
  16. Гайка М2 — 2шт
  17. Гайка М3 квадратная — 11шт
  18. Гайка М3 — 13шт
  19. Гайка М3 с нейлоновым кольцом — 1шт
  20. Гайка М4 — 2шт
  21. Гайка М4 квадратная — 1шт
  22. Гайка М8 — 1шт
  23. Шайба М2 — 4шт
  24. Шайба М3 — 10шт
  25. Шайба М3 увеличенная — 26шт
  26. Шайба М3 гроверная — 17шт
  27. Шайба М4 — 2шт
  28. Шайба М8 — 2шт
  29. Шайба М8 гроверная — 1шт
  30. Набор монтажных проводов
  31. Набор термоусадочных трубок
  32. Хомуты 2.5 х 50мм — 6шт

Сборка


Весь процесс подробно показан на видео:

Если следовать именно такой последовательности действий, то собирать станок будет очень просто.

Вот так вот выглядит полный набор всех комплектующих для сборки

Помимо них для сборки потребуется простейший ручной инструмент. Отвертки, шестигранные ключи, плоскогубцы, кусачки и т.д.

Перед тем начинать собирать станок желательно обработать напечатанные детали. Удалить возможные наплывы, поддержки, а также пройти все отверстия сверлом соответствующего диаметра. Фанерные детали по линии реза могут пачкать гарью. Их можно также обработать наждачной бумагой.

После того, как все детали подготовлены начать проще с установки линейных подшипников. Они закрадываются внутрь напечатанных деталей и прикручиваются к боковым стенкам:

Далее устанавливается ручка с шестерней. Вал вставляется в большое отверстие, на него устанавливается основание ручки и все это стягивается болтом на 8мм. Самой ручкой служит винт на М4:

Теперь можно собрать фанерное основание. Сначала боковые стенки устанавливаются на основание, а затем вставляется вертикальная стенка. В верхней части также есть дополнительная напечатанная деталь, которая задает ширину в верхней части. При закручивании винтов в фанеру не прикладывайте слишком большое усилие.

В столике на переднем отверстии необходимо сделать зенковку, чтобы винт с головой впотай не мешал сверлить плату. С торца также установлена напечатанная крепежная деталь.

Теперь можно приступить к сборке блока двигателя. Он прижимается двумя деталями и четырьмя винтами к подвижному основанию. При его установке необходимо следить, чтобы отверстия для вентиляции оставались открытыми. На основание он закрепляется при помощи хомутов. Сначала вал продевается в подшипник, а затем на нем защелкиваются хомуты. Также установите винт М3х35, который в будущем будет нажимать на микропереключатель.

Микропереключатель устанавливается на прорези кнопкой в сторону двигателя. Позже его положение можно будет откалибровать.

Резинки накидываются на нижнюю часть двигателя и продеваются до «рогов». Их натяжение надо отрегулировать так, чтобы двигатель поднимался до самого конца.

Теперь можно припаять все провода. На блоке двигателя и рядом с микропереключателем есть отверстия для хомутов, чтобы закрепить провод. Также этот провод можно провести внутри станка и вывести с обратной стороны. Убедитесь, что припаиваете провода на микропереключателе к нормально замкнутым контактам.

Осталось только поставить пенал для сверел. Верхнюю крышку нужно зажать сильно, а нижнюю закрутить очень слабо, используя для этого гайку с нейлоновой вставкой.

На этом сборка окончена!

Дополнения


Другие люди, которые уже собрали себе такой станок внесли много предложений. Я, если позволите, перечислю основные из них, оставив их в авторском виде:
  1. Кстати, тем, кто никогда раньше не работал с такими деталями, хорошо бы напоминать, что пластмасса от 3D принтеров боится нагрева. Поэтому здесь следует быть аккуратным — не стоит проходить отверстия в таких деталях высокоборотной дрелью или Дремелем. Ручками, ручками….
  2. Я бы еще порекомендовал устанавливать микропереключатель на самой ранней стадии сборки, так как привинтить его к уже подсобранной станине нужно еще суметь — очень мало свободного пространства. Не помешало бы также посоветовать умельцам заблаговременно хотя бы залудить контакты микропереключателя (а еще лучше — заранее припаять к ним провода и защитить места пайки отрезками термоусадочной трубки), дабы впоследствии при пайке не повредить фанерные детали изделия.
  3. Мне видимо повезло и патрон на валу оказался не отцентрированным, что приводило к серьезной вибрации и гулу всего станка. Удалось исправить центровкой «плоскогубцами», но это не хороший вариант. так как гнет ось ротора, а снять патрон уже не реально, есть опасения, что вытащу эту самую ось целиком.
  4. Затяжку винтов с гроверными шайбами производить следующим образом. Затягивать винт до момента, когда сомкнется (выпрямится) гроверная шайба. После этого повернуть отвертку на 90 градусов и остановиться.
  5. Многие советуют приделать к нему регулятор оборотов по схеме Савова. Он крутит двигатель медленно когда нагрузки нет, и повышает обороты при появлении нагрузки.

Ссылки для скачивания


Все файлы собраны в основной статье о проекте на моем сайте. Там все можно скачать по прямым ссылкам без регистрации и других проблем.

Cверлильный станок ЧПУ для печатных плат своими руками

Сверлильный

Изготовление печатных плат на машине с системой ЧПУ. Можно ли изготовить сверлильный станок ЧПУ для печатных плат своими руками?

Многие мастера, которые интересуются электронными программами, выбирают сверлильный станок с ЧПУ для печатных плат. Но почти каждый из них способен сказать, что сверлить печатные платы это настоящая головная боль. Высверливать малюсенькие отверстия очень часто приходится в большом количестве, поэтому требует самостоятельного решения данной проблемы.

Сверлильный станок ЧПУ для печатных плат своими руками

Сверлильный станок с ЧПУ своими руками для печатных плат представлен пристальному вниманию многих мастеров, которые смогут попробовать в самостоятельном порядке собрать данное оборудование. Но для начала нужно ознакомиться с некоторыми нюансами.

Описание станочной конструкции

Самым основным в конструкции машины становится мощный двигатель. В его комплект входят

  • патрон;
  • ключ;
  • сверла с десяток самого разного диаметра.

Многие любителей покупают такие двигатели и работают с платами, удерживая в руках такой чудо инструмент. Но можно всегда идти дальше и опираясь на такой движок, сделать своими руками полноценный агрегат с открытыми чертежами. Полированные валы и линейные подшипники можно смело использовать для линейного перемещения двигателя. В таком случае появиться прекрасная возможность минимизировать люфты.

В широком доступе хорошо распространены линейные подшипники. Как дешевый вариант можно использовать фанеру, которую можно применить важным элементом для основной станины. Так же можно воспользоваться оргстеклом или сталью для вырезания тех же самых деталей. Некоторые из мелких сложных деталей печатаются на 3D-принтере.

Сверлильный станок ЧПУ для печатных плат своими руками

Отличным приспособлением для поднятия двигателя в положение исходного режима пользуются спросом парочка канцелярских резинок, но в верхнем положении мотор благодаря микропереключателю отключается в самостоятельном режиме.

Стоит отметить, что нужно предусмотреть местечко для хранения ключа в маленькой сверловой пенале, в которой имеются пазы разной глубины для удобного хранения сверла с разнообразным диаметром.

Изготовление печатных плат на машине с системой ЧПУ

Очень удобным способом станет использование сверлильного станка с ЧПУ для сверления плат в небольшом помещении для того, чтобы изготовить печатные платы от макетных изделий и до изделий небольших партий. Присутствие гравировально-фрезерного оборудования с системой ЧПУ сокращает значительно время на производство печатной платы и значительно повышает качество ее изготовления.

Благодаря оборудованию с ЧПУ можно выполнять множество операций для производства печатной платы и необходимым началом станет создание проекта печатной платы. Удобной и самой популярной программой для этого станет Sprint Layout 6. При этом стоит учесть все технологические особенности обработки на оборудовании с ЧПУ фольгированного текстолита. При этом стоит учитывать и рабочие нюансы сверлильного станка ЧПУ для печатных плат своими руками, которые используются при изготовлении печатных плат:

  1. Рабочая поверхность стола изготовлена очень ровной, благодаря отторцованной фанере.
  2. С небольшим перерезанием режется стеклотекстолит для идеально ровной толщины данного материала. Для этого действия могут быть составлены карты высот для обработки с высокой точностью.
  3. Пирамидальный гравер используется для фрезеровки, сверла с хвостовиком используются под стандартную цангу, а по контурному вырезанию лучше применить фрезу «кукуруза».
  4. Присутствует ручная смена инструмента и при каждой ее смене не обнуляются координаты X и Y.
  5. Важным моментом является организация вытяжки, чтобы обезвредить организм от текстолитовой пыли. Неплохим решением может стать защита дыхательных путей влажной повязкой.

Сверлильный станок ЧПУ для печатных плат своими руками

Данная статья основывается на опыте многих мастеров. Именно они внесли многое в изготовление сверлильного оборудования, которое сделано собственными руками.

Двухшпиндельный станок

Для растачивания с обеих сторон отверстия и обтачивания торцов в деталях применяется двухшпиндельный станок. Но существует несколько нюансов в данном оборудовании, с которыми стоит познакомиться:

  1. Вертикальный двухшпиндельный станок для глубокого сверления модели ОС-402А имеет ступенчатый и автоматический цикл сверления.
  2. Для повышения собственной производительности разработан карусельно-фрезерный двухшпиндельный агрегат.
  3. Конструкция двухшпиндельного станка для притирки арматуры проектировалась и изготавливалась на предприятии Ленэнерго.
  4. Для навертывания двух резьбовых деталей одновременно с обоих концов валика на другом производстве изготавливался двухшпиндельный агрегат с механическим приводом со шпинделем в горизонтальном исполнении.
  5. Трехшпиндельный аппарат типа С — 13 и агрегат типа С — 12 имеют схожесть в технической характеристике и конструкции. Но существует и разница между машинами, где стол у двухшпиндельного станка имеет меньшую длину.
  6. С одним или двумя шпинделями существуют плоскошлифовальные машины с круглым столом. Разница в том, что двухшпиндельный аппарат один шпиндель используется для предварительного шлифования, а другой используется для окончательного.
  7. Приспособления для накатывания стержня и галтелей у валов имеют большой спрос у населения. Лишь в некоторых случаях можно рассчитывать на одновременную накатку двух валов с их стороны для двухшпиндельного станка, так же установка специального клапана присутствует на станке.
  8. Специализированный станок имеет ручное управление и благодаря модели 4723Д — механический привод. Так же машина используется для многопозиционной обработки многих деталей. В его комплект входят следующие: станок, машинный генератор униполярных импульсов, высокочастотный электронно-полупроводниковый генератор. В отличие от данной модели двухшпиндельный станок усилен Г – образной траверсой.

Сверлильный станок ЧПУ для печатных плат своими руками

С двухшпиндельным оборудованием, которые удобны в программировании, уменьшается ручная разновидность управления и многие настройки.

Стоит заметить, что каждый двухшпиндельный агрегат представляет собой самое мощное оборудование для любого цеха, которым стоит воспользоваться любому мастеру.

Сверлильный станок для печатных плат с автоматической регулировкой

Приветствую, Самоделкины!
В этой статье описан процесс самостоятельного изготовления сверлильного станка для печатных плат. Автором данной самоделки является Роман (YouTube канал «Open Frime TV»)

Основание станка напечатано на 3d принтере. 3D модель можно скачать ЗДЕСЬ. Если же у вас нет 3d принтера — не беда, можно использовать вот такой корпус:

Как такой изготовить узнаете из этого видеоролика.

Вообще, сегодняшняя самоделка, это усовершенствованная версия сверлильного станка из видеоролика выше, так сказать сверлильный станок версии 2.0. Те, кто не видел данный видеоролик, обязательно посмотрите.

Итак, какие же именно изменения претерпел сверлильный станок? А изменение следующие:
1) Автоматический регулятор оборотов дрели. Когда нету нагрузки обороты минимальные, как только нагрузка появилась, обороты увеличились до максимальных, а потом опять упали. Это, скажу я вам, очень полезная штука. Во-первых, она уменьшает износ щеток, а во-вторых, позволяет легче прицелиться при сверлении.

2) Следующее изменение — это сверла. До этого автор пользовался обыкновенными сверлами по металлу нужного диаметра.


Но ведь для этих целей существуют специальные крутые твердосплавные сверла.

Автор заказал их и понял, насколько эти сверла облегчили процесс сверления. Во-первых, у них спиральная форма и у вас по всему столу не будет разлетаться труха, а во-вторых, они тупятся намного дольше чем обыкновенные сверла, что есть огромный плюс.

Также можно было заменить цанговый патрон на быстрозажимной, он стоит чуть дороже, но пользы намного больше, не нужно постоянно менять цанги.

Но так как мы имеем твердосплавные сверла, у которых все хвосты одинаковые, то можно оставить и этот патрон, особых проблем с ним нет.
Теперь давайте посмотрим, как все это реализовано. Сам станок собирается несложно. Делаем все по картинке автора данной модели. Потихоньку собираем, соединяя подвижные части, а также смазываем их, так как это пластмасса и может легко выработаться.

Единственное, что не предусмотрено в 3д модели корпуса, это подставка, ее придется изготовить самостоятельно. Автор сделал ее из дерева. Она довольно-таки увесистая, точно не будет шататься.


Для придания красивого вида автор также еще и покрасил ее в черный цвет.

Как видим получилось не хуже заводских моделей.
Следующим шагом рассмотрим схему автоматического регулирования оборотов.

Она несложная, всего 2 транзистора и обвязка.

Силовой транзистор желательно поставить на радиатор.

Давайте разберемся, как работает данная схема. Без нагрузки на базу силового транзистора приходит напряжение с подстроечного резистора. Данный транзистор находится в приоткрытом состоянии.

Теперь о том, что происходит, когда подается нагрузка. На одной ножке резистора шунта напряжение становится меньше, чем на другой:

В таком случае, на базе второго транзистора, напряжение становится меньше, чем на эмиттере, и он открывается, подтягивая базу силового транзистора к плюсу питания. Соответственно силовой транзистор открывается на полную мощность и обороты двигателя возрастают.


Как только нагрузка пропала, разница напряжений стала меньше, и верхний транзистор закрылся. Двигатель опять еле вращается. Изменяя сопротивление подстроечного резистора можно выставлять минимальные обороты вращения двигателя.

Единственной сложной задачей в данной схеме есть подбор резистора шунта.

Если его взять большего номинала, то на нем будет постоянно падать напряжение, а, следовательно, нижней транзистор будет всегда открыт.

Для разных двигателей номинал будет разный. Автор купил себе 10 резисторов номиналом от 1 Ома и до 10 Ом и стал пробовать.

При резисторе номиналом 2Ом была оптимальная работа. И запомните, чем мощнее моторчик, тем меньше номинал нужно брать.

Идем дальше. Печатная плата данного регулятора получилась очень маленькой. Такую можно без особых проблем собрать и на макете, но мы будем делать ее на печатной плате.

Запаиваем платку.

И вот так она работает. Как видим, мультиметр фиксирует напряжение непосредственно на двигателе.


Дотрагиваемся пальцем к патрону и обороты сразу же возрастают. Убираем палец, и они падают до заданных.

Как ни странно, при такой простоте схемы работа безотказная. Без изменений в данном проекте осталось освещение. Это все те же 4 светодиода мощностью 1Вт каждый расположенных снизу двигателя на вот такой пластине-радиаторе.


Для красоты спрячем плату, провода и выключатель в корпус. Тут отлично подойдет корпус от старого блока питания.

В нем просверлим необходимые отверстия и теперь осталось все соединить воедино.



Ну вот и собрали станочек. Получилось довольно красиво, не отличить от заводской модели. Как вы могли заметить на двигатель установлен конденсатор на 100 нФ. Когда щетки начнут изнашиваться он защитит от ложных срабатываний.

Ну и в конце можно произвести тест станка. Для этого возьмем какую-нибудь старую плату и попробуем сверлить. Подсветку автор отключил, чтобы не слепить камеру.

Как видим, процесс сверления просто идеальный. Прицелился, чуть дал нагрузку и с легкостью просверлил отверстие.
Ну а на этом все. Благодарю за внимание. До новых встреч!

Видео:


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Станок для сверления печатных плат из CD-привода TEAC


Прочитав статьи о достижениях форумчан в области станкостроения (молодцы, ребята!) с упоминанием узлов СД приводов, полез в хламовник и достал дохлый CD-привод TEAC.

Взглянув на каретку, держащую лазерный модуль, сразу понял — это почти готовый узел привода сверлильной головки!

Содержание / Contents

Точность подачи не вызывает сомнений — ведь САМ ЛАЗЕР позиционировала! Но для бОльшей надежности (все-таки сверлильная головка потяжелее, чем лазер) нужна была еще одна такая же каретка. К счастью, рядом валялся такой же (или почти) TEAC. С механикой у них, похоже, стандарт. Короче, снимаем с него каретку, устанавливаем рядом с имеющейся, и вот что получилось:

Рис. 1

Рабочий ход этого тандема составляет около 10 мм — вполне достаточно. Можно, конечно, кое-что подпилить, чтобы, сблизив каретки, увеличить ход сверла, но нет смысла — станок предназначен только для сверления плат (по крайней мере, у меня).
ПС. Один лазер демонтировать не удалось — так что можно смело в названии станка писать — «лазерный»!

Теперь нужно подумать о станине. Смотрим на шасси этого же дисковода:

Рис. 2

Режем по красным линиям, подрезаем углы по вкусу. Разрез по зеленым линиям пригодится нам потом. Не забываем снять заусенцы — источники травм. В итоге получаем два одинаковых, но симметричных кронштейна:

Рис. 3

Углы проверять не стал — все-таки TEAC — порядочная фирма. Просверлив необходимые отверстия, собираем станину, ориентируясь на имеющиеся на деталях полочки и уголочки:

Рис. 4

Вид с тыльной стороны (изнутри станка):

Рис. 5

Стрелками указаны места сопряжений деталей. Очень уж эти полочки и уголочки облегчают сборку! Не забываем устанавливать под гайки пружинные шайбы — станок же ведь! Вибрация…

Теперь нужно подумать о сверлильной головке. Сначала хотел приспособить свой ДПР-12-2 27В 5000 об/мин (для него-то и городил вторую каретку, и, как оказалось, совсем не зря!). Но мой мотор на этой конструкции выглядел, как слон в посудной лавке!

В дисководе оказалось два двигателя постоянного тока.
Сначала я снял мотор привода каретки (виден на Рис.1). На валу его напрессована пластмассовая втулка, включающая в себя шестеренку и перфорированный диск. Подключив к контактам 12В, попробовал остановить вал пальцами — чуть кожу не содрал, а мотор так и не остановил. Диаметр втулки в свободном от шестерни месте — чуть больше 3 мм. Можно подогнать под цанговый патрон! Аккуратно спилив шестерню и подгоняя диаметр втулки (прямо на работающем моторе), пытаюсь напрессовать патрон на втулку:

Рис. 6

Честно говоря, у меня не получилось — получил биения и вибрацию. Пробовал вместо винтов ставить стопорные (без головок) — практически тот же результат. Скорее всего, это связано с соотношением масс мотора и патрона. Может, у кого и получится — мотор явно заслуживает внимания.

Тогда мое внимание привлек мотор привода выбрасывателя. У меня был цанговый патрон от советской сверлилки — помните, наверное — маленький моторчик с тоненьким валом и здоровенный сетевой адаптер. Так вот, патрон от этой сверлилки по посадочному месту практически подошел по диаметру к валу. Намотал на вал один слой медной фольги — и патрон пришлось напрессовывать в тисках (соблюдая осторожность). В общем, думаю, хороший токарь с этой задачей должен справиться, ну, а мне просто повезло.

Продолжаем. Из остатков СД-шного шасси (см. Рис. 2, зеленые линии) мастерим подходящий кронштейн и на него устанавливаем сверлильную головку. Прикрепляем агрегат винтами к кареткам по месту:

Рис. 7

Итак, станина готова!
Нужно основание для станка. Без основания это дрель какая-то, что ли…

ПС. Когда разбирал СД, мелькнула мысль использовать его корпус в качестве осонования — получилась бы почти полная унификация!
Но! В-первых — жаба задавила, а во вторых (тоже немаловажно) — если монтировать станину прямо на корпус, нужно в корпусе сверлить отверстие для выхода сверла. А раз отверстие (пусть маленькое!) — то через неделю корпус будет забит стружкой. Чтобы не сверлить, пришлось бы на корпус установить фальшь-стол, в котором и просверлили бы это самое отверстие. Тогда зачем нам корпус? Короче, победила жаба. Скажу по секрету — спер на кухне разделочную доску (в ней есть даже дырка — вешать станок на гвоздик). Лучше всего, наверное, подойдет пластина из текстолита-гетинакса толщиной около 8-12 мм. Тут уж — у кого что есть. Хотя перемонтировать станок на новое основание — тьфу! — 4 винта перевинтить.

Итак, монтируем станину на кухонное основание:

Рис. 8

Т.к. будем сверлить платы не только маленькие, обеспечиваем между станиной и основанием зазор. Обеспечиваем его, устанавливая станину на винтах:

Рис. 9

Ничего более умного не придумал для обеспечения зазора, как навинтить на крепежные винты по одной гайке М4. Можно шайбы — короче, величину зазора можно регулировать — главное, чтобы в этом зазоре плата свободно перемещалась. Рабочее поле (расстояние от центра сверла до ближайшей опоры) — 80 мм — для моих целей достаточно (в конце концов, если не поместится, можно центр платы просверлить и вручную). Да и это не догма — можно крепление станка организовать по другому. А можно вообче станок демонтировать со станины и елозить им по плате…

Рис. 10

Красными стрелками указаны места крепления станины. Думал еще укосины смонтить — схематически нарисованы синим — но оказалось, что не нужно. Зеленым — размер рабочего поля.

Уже можно сверлить, демонтировав верхний двигатель и двигая каретки пальцами.
Каретки с головкой двигаются плавно.
Но вот этот сАмый двигатель не дает покоя. Это ж ведь электроподача с редуктором! Концевики только поставь и дави себе на кнопочку-педальку.

Подключив 12В к сверлильной головке, пытаюсь методом «тыка» подавать напряжение на мотор привода кареток. Нахрапом не получается. Если на мотор привода кареток подать 12В — плата не успевает просверлиться и начинают щелкать механические защиты на каретках. Если напряжение ниже — просверливается, но не всегда. Мотор привода кареток должен иметь небольшие обороты и при этом достаточную мощность. Думаю, применяя ШИМ на мотор привода кареток, можно попытаться добиться успеха. Пока откладываем. Может, у кого какие идеи появятся.

Далее — подсветка. Берем следующую деталь:

Рис. 11

Вырезаем по красненькому, получаем кронштейн. Особо не описываю, понятно из фото:

Рис. 12

Свтодиоды устанавливаем «на весу» на собственных выводах для регулировки зоны подсветки:

Рис. 13

На данном этапе демонтировал механизмы сцепления кареток с шаговым валом, «подвесил» пластину с каретками на пружинку и работаю.
Пока все. На внутренней поверхности станка установлена клеммная колодка для подключения всего, что потребуется впредь. На нее подается 12В. Пока.

Пылеотсос по крайней мере нужен еще, но это уже совсем другая история…

Спасибо за внимание!

Камрад, смотри полезняхи!

Владимир (reper)

г. Николаев

Уже на пенсии. Работал в «ящике» мастером участка по производству печатных плат — от фотооригиналов до сборки и регулировки. Играл в музыкальных ансамблях.
Записываю песни и инструменталки на компьютере — под рукой громадный оркестр в любое время года и суток, никто не пьянствует, не прогуливает репетиции. Точнее, либо никто, либо все!!!

Паяльники у меня тоже под рукой, да и приборы кой-какие имеются. Руки-то свербят!
Занимаюсь несложной аналоговой техникой, был помоложе — паял всякие там усилители, примочки, светомузыки, даже изготовил один из первых в городе аналоговых синтезаторов.

Схемы, конечно, не сохранились, но кой-какие идеи помню. Ну, в общем вот так пока….

 

Сверлильный станок для печатных плат

Всем привет!
Хочу поделится своей конструкцией сверлильного станка для печатных плат.
Основной частью является китайский шпиндель для ЧПУ станков на 200Вт. Мощность для печатных плат конечно же излишня, но не в ней дело. Выбор пал именно на него из-за нескольких причин: вал на двух шарикоподшипниках, что исключает люфты; шпиндель сразу приходит с напресованной цангой ER-11, при при питании 12В очень тихо работает.
Отдельно про цангу, так как она напресованна производителем, то это полностью исключает возможные перекосы, сверло 0.3мм крутится без каких-либо видимых отклонений. К тому же цанга предназначена для зажима инструмента диаметром около 3мм, что позволяет использовать твердосплавные сверла с хвостовиком 3.175мм.
Станина сделана из листа железа толщиной 4мм, размеры 150х250 мм. Ножки сделаны следующим образом: в станине были сделаны 4 отверстия под винт М8 с потайной головкой, вкручены винты с гайками, винты обрезаны с обратной стороны под гайку, на гайки надеты мягкие резиновые подушки от холодильных компрессоров.
Направляющими служат два полированных вала от принтера диаметром 8мм. Вот тут вылез первый косяк — жесткости у них маловато, нужно использовать больший диаметр, около 10-12мм. Но для печатных плат жесткости достаточно. Они закреплены на станине при помощи концевых опор SHF8, такой способ позволяет установить валы строго перпендикулярно к плоскости станины, к тому же конструкция получается разборной.
Линейные подшипники. Использованы LMK8UU — короткие с квадратным фланцем. Тут вылез второй косяк — два коротких подшипника сильно очень люфтят. Нужно было использовать удлиненные подшипники. Решением было покупка еще 2 таких, итого 4 подшипника. Люфт значительно уменьшился, но все же присутствует. Подшипники были смазаны густой смазкой, это сделало движение более плавным и тихим.
Подвижная часть, на которой установлен шпиндель, изготовлена из алюминий толщиной 7мм, размеры 65х190мм. Можно было бы использовать тот же материал, что и для станины, но на шпинделе имеется выступ диаметром 26мм и сделать под него отверстие в алюминии намного легче.
Дальше была установлена пружина для возврата подвижной части. Механизм опускания можно увидеть на фото, сделан из какой-то железяки. Блок питания на 12В, прикреплен сзади на алюминиевый уголок. Вся конструкция была почищена лепестковым кругом для того, чтобы убрать ржавчину и сделать ее красивой.
Из доработок нужно закрепить между собой два свободных конца направляющих, это увеличит жесткость. Так же туда можно добавить ручку для удобной переноски. Неплохо было бы добавить подсветку, но у меня на рабочем столе достаточно света.
Далее можно на фото увидеть само изделие.
IMG_20181016_214703.jpg IMG_20181016_214719.jpg IMG_20181016_214730.jpg
Так же видео сверления

Гравировка печатных плат на ЧПУ фрезерном станке. Часть вторая. Коррекция кривизны текстолита

▌Станок
Для гравировки платы нужен фрезерный станок ЧПУ. Кудаж без него. У меня тут какой то китаец без роду и племени. С рабочим столом 200 на 200мм и 12мм валами.


Стоит на нем такой же безродный коллекторный шпиндель на 350Вт, дающий около 15000 оборотов. Довольно мало, надо сказать. Хорошо бы от 30 000, а лучше 50-100 тысяч.

Управляется все простейшей платкой опторазвязок на LPT порт.

Через MACh4, на который натянут скринсет от Михаила Юрова. Нагугливается на каждом углу.

Без него интерфейс MACh4 ничего кроме рвотных позывов не вызывает обычно. Вырвиглазная дичь. Особенно с непривычки.

Про сам станок, его конструкцию, настройку и работу если кому то будет интересно я расскажу в другой раз. Там нет ничего сложного, все делается интуитивно и дубово.

▌фрезы


Основной инструмент который нам нужен — это гравировальный штихель. Вот такая вот коническая фреза. Чем острей тем лучше. Ходовые размеры острия в 0.1мм (если хотите забацать что то уровня LQFP и с дорогами в 0.3мм) и 0.2мм для более крупных корпусов вроде SOIC и широких, под 0.5мм, дорожек. Также не помешат такого же плана фреза, но с режущей кромкой 1 или даже 1.5мм — пригодится если придется не просто гравировать изоляцию контуров, а нужно будет сносить целые полигоны.


Также нужны будут сверла. У меня три размера используется. 0.4..0.6мм для переходных отверстий. 0.8…1мм для обычных TH компонентов и 3мм для крепежных отверстий под всякие потенциометры, энкодеры, крепежные отверстия в плату и так далее. Чтобы было удобней, я держу инструмент сразу в цанге-гайке. Так как правило не всегда удается подобрать все под одну цангу. А достать цангу из гайки, особенно если это цанга маленького размера, бывает сложно. Поэтому проще иметь штук пять гаек и цанг под все случаи жизни. И держать их такими вот наборами.


Для обрезки платы используется фреза «кукуруза» диаметром 2…3мм, лучше 2. Не так много опилок и нагрузка на станок меньше.

Плата просто приклеивается к жертвенному столу скотчем. Кстати, стол можно сфрезеровать под ноль, тогда все огрехи геометрии станка по крайней мере будут повторять форму подложки, что позволит повысить точность. Но я этого делать не стал, хотя у меня расхождение между углами составляет около миллиметра. Просто к гладкой ламинированной МДФ панели лучше клеится текстолит и при удалении скотч отрывается сразу полностью, не размазываясь по волокнистой структуре МДФ. Разница как… отрывать скотч от лакированного стола или от картонной коробки. Коробка срывается с мясом. Тут так же почти. Потому не фрезерую.

▌Сканирующий софт
Чтобы компенсировать кривизну стола, а у меня она особо кривая, я провожу сканирование поверхности, строя карту высот. Сначала надо подготовить карту высот:

Вообще в Mach4 есть свой визард для этой цели. Искать в меню Wizard-Pick Wizard…-Digitize Wizard, откроется вот такая хреновина:

Где можно указать размер общупываемой поверхности (Width и Height of area), безопасную высоту перемещения щупа (Z travel), глубину до которой щуп будет искать поверхность (Z Axis Probe Depth). Stepover это шаг по осям, а FeedRate скорость с которой щуп пойдет до поверхности. Чем быстрей тем быстрей сканирование, но по инерции он может попасть чуть глубже чем надо. Поэтому тут надо ловить баланс. Потом жмете Create and Load Gcode и у вас в мач сразу же будет загружен готовый код сканирования. Я не пользуюсь этим визардом потому, что он не очень удобный. Куда проще сгенерировать код в той же проге которая будет править код плана резки. Это G-code Ripper.

Брать его с официального сайта Не забыв передать привет мудилам из Роскомнадзора, которые его заблокировали как экстремистский. Так что применяйте прокси-плагины (Opera Turbo вполне подойдет или FriGate плагин для Chrome, только там надо будет вручную вписать адрес этого сайта).

Итак, запускаете G-code Ripper. Эта штука, как и flatcam тоже написана на питоне и тоже имеет консольный интерфейс (впрочем я в нем пока сам не разбирался, а так, думаю, можно вписать ее в наш злой батник). А пока же втыкайте в его GUI.

И что же мы видим:

Вот такое главное окно программы. Нам надо выбрать в левом нижнем углу Auto Probе и через меню File загрузить гкод нашей гравировки. Сначала давайте сторону которую будем резать.

Получили наш план резки и белые крестики поверх. Крестики это точки ощупывания. Обратите внимание на расположение осей координат, туда вы должны будете потом пригнать щуп. А пока займемся пересчетом и вводом параметров программы:

Probe Offset — это смещение щупа относительно инструмента. У меня щупом является сам инструмент, поэтому тут нули. Probe Z Safe — безопасная высота сканирования. Зависит от кривизны вашей системы. У меня разброс под миллиметр и потому я поставил 2. А вообще при ровном столе достаточно и 0.8 мм. Чем ниже тем быстрей сканирование. Опускаться то меньше! Probe Depth — предельная глубина на которую пойдет щуп. У меня 0, т.к. в данном случае начало координат стоит в самом низком углу моего стола. А вообще можно и в минус немного загнать, скажем на -0.5. Хуже не будет. Probe Feed — скорость опускания. Меньше — точнее, но дольше скан и шуму больше. У меня 100мм/мин. Х/У Points это сколько точек по вертикали и горизонтали снять. Вон те самые белые крестики. Габариты платы он сам выберет. Pre и Post коды я оставляю пустыми, т.к. никаких дополнительных кодов перед и после программы мне не надо. А вот счастливые обладатели ченейджера могут, например, автоматом специальный щупательный инструмент вытащить, а потом убрать обратно. Controller у меня MACh4 и, собственно, все.

Жмем Save G-code File Probe Only, получаем файл с гкодом, шлем его в станок и идем щупать плату.

Как же станок будет сканировать поверхность? Для этого у станка есть щуп. Когда щупа касается масса, то станок это чувствует. За массу у меня принят шпиндель. Вот та пластиковая приблуда, что окружает его крыльчатку это держатель щетки. Которая сделана из старой фрезы и втыкается в центр вала, на подпружиненном крепеже. Почему я просто не подал массу на корпус шпинделя? А потому, что через его подшипники довольно хреновый контакт. Он может пропадать в зависимости от угла поворота. А так он прям по валу дойдет до цанги, а внутри цанги еще маленькая пружинка подведет контакт прямо к инструменту. А сам щуп представляет собой пластину известной толщины (где то 0.5мм) на проводке. Если мне надо выставить инструмент точно на 0 я кладу в нужное место пластину, прижимаю ее пальцем к поверхности и даю команду на поиск нуля. Станок тычется в пластину инструментом, потом учитывает толщину и осознает текущую высоту кончика инструмента. Подняв при этом инструмент на 2.5мм.

В случае же с текстолитом мне нужно просто положить контакт щупа на медь, закрепить изолентой, чтобы не убежал и сделать поиск поверхности. Координата, конечно, выставится не верно. Т.к. в этом случае нет толщины самого щупа. Но это не важно. Главное теперь можно вручную, вводя команду G1 Z-2 (почему -2? А потому, что по моему скрипту после нахождения у меня инструмент подпрыгнет на 2.5мм, а 0.5 толщина пластины щупа, т.е. фактически его координата станет 2мм), опустить инструмент почти до уровня текстолита. Почему почти? А для больше точности не помешает поймать самый нежный контакт, а автопоиск довольно груб, т.к. у станка есть некоторая инерция и он немного промахивается. А вот если завести инструмент почти на ноль, а потом вручную, командами G1 Z## сдвигая на сотку-другую вверх или вниз добиться того, что кнопка индикатора начнет мерцать (а она у меня меняет цвет когда происходит касание щупа) от малейшей вибрации в помещении. Скажем когда кто-то мимо прошелся. Да, само собой при этом мы выставляем координаты Х и У в будущий ноль координат исходя из нашей платы. Не путать с нулем станка (машинные координаты).

Дальше, когда ноль найден, то надо обнулить координаты по XYZ и запустить программу сканирования, указать в какой файл записать данные и получить текстовый файл примерно вот такого вида:

0.00000,0.00000,0.00500
7.05500,0.00000,0.03000
14.11500,0.00000,0.03000
21.17000,0.00000,0.06500
28.22500,0.00000,0.07000
35.28500,0.00000,0.11500
42.34000,0.00000,0.12000
49.39500,0.00000,0.16000
56.45500,0.00000,0.14000
63.51000,0.00000,0.14000
0.00000,8.65500,0.00000
7.05500,8.65500,0.00000

Тут все и так ясно — это просто координаты по осям где инструмент коснулся поверхности. Что нам, собственно, и нужно.

Возвращаемся в наш Gcode-Ripper и делаем там Read Probe Data File и наши крестики становятся черными:

Готово. Осталось теперь нажать для верности кнопочку Recalculate и сохранить скорректированный файл. Save G-code File Adjusted. Если теперь их сравнить в каком-нибудь NC-Corrector’e то на виде сбоку будет видно, что у нового файла появился рельеф дна 🙂

старый:

новый:

Таким же макаром правим и обрезку по контуру, иначе вы рискуете не дорезать до конца или наоборот задрать стол. Он, конечно, жертвенный, но лучше обходиться без жертв.


Ободрали изоляцию. Получилось хреново, потому что фреза 0.2 да еще и тупая. А тут бы 0.1 и поострей. Лохмы образуются потому, что контур надо бы обходить в двух направлениях, т.к. фреза когда идет по фольге с одной стороны пропила режет чисто, с другой махратит. И надо обратный проход сделать, снять заусенки. А флаткам не делает его или я не научился еще. Поэтому я их обычно сношу мелкой шкурочкой в пару движений. Еще можно снизить подачу реза, будет намного чище. Или, если шпиндель позволяет, обороты повысить. Вон LPKF Protomat жарит на 100 000 оборотах и там гладенько все.


А это вот уже практически готовая плата. Четыре огромные дырки на месте кнопки это я хорошо факапнулся на эпизоде смены инструмента при сверлении. Когда выложу видео там увидите сами. Надо было поставить после 0.8мм сверла 1мм сверло (или просто нажать «далее», чтобы тем же 0.8мм просверлить), а я не прочитал что мне предложил поставить станок, забыл, что там еще миллиметровые отверстия есть и воткнул сразу 3мм и он мне их весело засверлил 🙂 ЧПУ не прощает ошибок.

Вот как то так. Да, на двусторонке, после переворота текстолита, надо еще раз его простучать щупом.

Кроме обещанной видяшки которую я хз еще когда смонтирую (ненавижу это дело) будет еще одна две статейки по флаткаму и мне тут товарищ набросил альтернативный метод. Я его сверстаю и скоро выложу. На этом тему наверное закрою. Т.к. ну чего там еще рассусоливать то? 😉

Отправить ответ

avatar
  Подписаться  
Уведомление о