Arduino: ТОП-3 графических сред программирования

Наверх
  • Рейтинги
  • Обзоры
    • Смартфоны и планшеты
    • Компьютеры и ноутбуки
    • Комплектующие
    • Периферия
    • Фото и видео
    • Аксессуары
    • ТВ и аудио
    • Техника для дома
    • Программы и приложения
  • Новости
  • Советы
    • Покупка
    • Эксплуатация
    • Ремонт
  • Подборки
    • Смартфоны и планшеты
    • Компьютеры
    • Аксессуары
    • ТВ и аудио
    • Фото и видео
    • Программы и приложения
    • Техника для дома
  • Гейминг
    • Игры
    • Железо
  • Еще
    • Важное
    • Технологии
    • Тест скорости

Scratch for Arduino делает программирование под Arduino более наглядным / Habr

Windows / Mac / Linux: Программирование Arduino не так уж сложно, но если вы ищете что-то более наглядное, то Scratch for Arduino(S4A) это именно то, что вы искали. Она использует MIT’s Scratch в качестве основы для обучения детей (или просто начинающих) программированию Arduino.

Идея состоит в том, чтобы предоставить вам более наглядный язык программирования, чтобы вы лучше понимали как это работает. Даже если вы профессионал в программировании Arduino, то даже вам будет интересно поработать с данной программой. Это отличная программа для начала программирования Arduino, для того чтобы вы разобрались как с ним работать.
Интерфейс программы выглядит следующим образом:

Основные микроконтроллеры Arduino представляются в виде функциональных блоков; аналоговая и цифровая запись и чтение, а так более высоко-уровневые вещи.Здесь можно найти блоки для управления стандартным и непрерывным вращением серводвигателя:

В S4A, плата Arduino представляет собой особый вид спрайта. Спрайт Arduino автоматически найдет USB-порт, к которому подключена плата.
Существует возможность подключения к нескольким платам одновременно, просто добавьте новый спрайт Arduino.

Технические детали

Поддерживаемые платы

S4A работает с Arduino Diecimila, Duemilanove и Uno. Другие платы не были проверены, но они могут также работать.
Подключение

Компоненты должны быть связаны определенным образом. S4A поддерживает 6 аналоговых входов (аналоговые контакты), 2 цифровых входа (цифровые контакты 2 и 3), 3 аналоговых выхода (цифровые контакты 5, 6 и 9), 3 цифровых выхода (выводы 10, 11 и 13) и 4 специальных выхода для подключения серводвигателя (цифровые контакты 4, 7, 8 и 12).
Вы можете управлять платой путем присоединения к нему беспроводного RF модуля, такого как Xbee. Так же S4A позволяет управлять платой через USB порт.
Совместимость

S4A обратно совместим со Scratch, так что вы можете открывать Scratch-проекты в нем. Однако, вы не сможете поделиться своими проектами на веб-сайте сообщества Scratch, так как это идет вразрез с условиями использования Scratch. Имейте в виду, что эта совместимость не работает в обоих направлениях, так что вы не сможете открыть проект S4A с помощью оригинального Scratch. Использование платы PicoBoard вместе с Arduino также поддерживается.
Мастерская

Полный архив с материалами и упражнениями можно скачать отсюда

Вот некоторые видео о возможностях данной программы:
Полнофункциональный робот. Робот с вращающейся камерой, датчиком расстояния и пультом дистанционного управления. Для этого используется две платы Arduino (пульт дистанционного управления + робот), модуль беспроводной XBee, три инфракрасных датчика, модуль камеры и три серводвигателя

S4A вводный семинар

Структура программы на языке C++ для Arduino [Амперка / Вики]

Рассмотрим пример минимально возможной программы на C++ для Arduino, которая ничего не делает:

void setup()
{
}
 
void loop()
{
}

Разберёмся что здесь написано и почему это обязательно: почему нельзя обойтись просто пустым файлом.

Из чего состоит программа

Для начала стоит понять, что программу нельзя читать и писать как книгу: от корки до корки, сверху вниз, строку за строкой. Любая программа состоит из отдельных блоков. Начало блока кода в C/C++ обозначается левой фигурной скобкой {, его конец — правой фигурной скобкой

}.

Блоки бывают разных видов и какой из них когда будет исполняться зависит от внешних условий. В примере минимальной программы вы можете видеть 2 блока. В этом примере блоки называются определением функции. Функция — это просто блок кода с заданным именем, которым кто-то затем может пользоваться из-вне.

В данном случае у нас 2 функции с именами setup и loop. Их присутствие обязательно в любой программе на C++ для Arduino. Они могут ничего и не делать, как в нашем случае, но должны быть написаны. Иначе на стадии компиляции вы получите ошибку.

Классика жанра: мигающий светодиод

Давайте теперь дополним нашу программу так, чтобы происходило хоть что-то. На Arduino, к 13-му пину подключён светодиод. Им можно управлять, чем мы и займёмся.

void setup()
{
    pinMode(13, OUTPUT);
}
 
void loop()
{
    digitalWrite(13, HIGH);
    delay(100);
    digitalWrite(13, LOW);
    delay(900);
}

Скомпилируйте, загрузите программу. Вы увидите, что каждую секунду светодиод на плате помигивает. Разберёмся почему этот код приводит к ежесекундному миганию.

В наши ранее пустые функции мы добавили несколько выражений. Они были размещены между фигурными скобками функций setup и loop. В setup появилось одно выражение, а в loop сразу 4.

Каждое выражение — это приказ процессору сделать нечто. Выражения в рамках одного блока исполняются одно за другим, строго по порядку без всяких пауз и переключений. То есть, если мы говорим об одном конкретном блоке кода, его можно читать сверху вниз, чтобы понять что делается.

Теперь давайте поймём в каком порядке исполняются сами блоки, т.е. функции

setup и loop. Не задумывайтесь пока что значат конкретные выражения, просто понаблюдайте за порядком.

  • Как только Arduino включается, перепрошивается или нажимается кнопка RESET, «нечто» вызывает функцию setup. То есть заставляет исполняться выражения в ней.

  • Как только работа setup завершается, сразу же «нечто» вызывает функцию loop.

  • Как только работа loop завершается, сразу же «нечто» вызывает функцию loop ещё раз и так до бесконечности.

Если пронумеровать выражения по порядку, как они исполняются, получится:

void setup()
{
    pinMode(13, OUTPUT);     ❶
}
 
void loop()
{
    digitalWrite(13, HIGH);  ❷    ❻    ❿
    delay(100);              ❸    ❼    …
    digitalWrite(13, LOW);   ❹    ❽ 
    delay(900);              ❺    ❾ 
}

Ещё раз напомним, что не стоит пытаться воспринимать всю программу, читая сверху вниз. Сверху вниз читается только содержимое блоков. Мы вообще можем поменять порядок объявлений setup и loop.

void loop()
{
    digitalWrite(13, HIGH);  ❷    ❻    ❿
    delay(100);              ❸    ❼    …
    digitalWrite(13, LOW);   ❹    ❽ 
    delay(900);              ❺    ❾ 
}
 
void setup()
{
    pinMode(13, OUTPUT);     ❶
}

Результат от этого не изменится ни на йоту: после компиляции вы получите абсолютно эквивалентный бинарный файл.

Что делают выражения

Теперь давайте попробуем понять почему написанная программа приводит в итоге к миганию светодиода.

Как известно, пины Arduino могут работать и как выходы и как входы. Когда мы хотим чем-то управлять, то есть выдавать сигнал, нам нужно перевести управляющий пин в состояние работы на выход. В нашем примере мы управляем светодиодом на 13-м пине, поэтому 13-й пин перед использованием нужно сделать выходом.

Это делается выражением в функции setup:

pinMode(13, OUTPUT);

Выражения бывают разными: арифметическими, декларациями, определениями, условными и т.д. В данном случае мы в выражении осуществляем вызов функции. Помните? У нас есть свои функции setup и loop, которые вызываются чем-то, что мы назвали «нечто». Так вот теперь мы вызываем функции, которые уже написаны где-то.

Конкретно в нашем setup мы вызываем функцию с именем pinMode. Она устанавливает заданный по номеру пин в заданный режим: вход или выход. О каком пине и о каком режиме идёт речь указывается нами в круглых скобках, через запятую, сразу после имени функции. В нашем случае мы хотим, чтобы 13-й пин работал как выход.

OUTPUT означает выход, INPUT — вход.

Уточняющие значения, такие как 13 и OUTPUT называются аргументами функции. Совершенно не обязательно, что у всех функций должно быть по 2 аргумента. Сколько у функции аргументов зависит от сути функции, от того как её написал автор. Могут быть функции с одним аргументом, тремя, двадцатью; функции могут быть без аргументов вовсе. Тогда для их вызова круглые скобка открывается и тут же закрывается:

noInterrupts();

На самом деле, вы могли заметить, наши функции setup и loop также не принимают никакие аргументы. И загадочное «нечто» точно так же вызывает их с пустыми скобками в нужный момент.

Вернёмся к нашему коду. Итак, поскольку мы планируем вечно мигать светодиодом, управляющий пин должен один раз быть сделан выходом и затем мы не хотим вспоминать об этом. Для этого идеологически и предназначена функция setup: настроить плату как нужно, чтобы затем с ней работать.

Перейдём к функции loop:

void loop()
{
    digitalWrite(13, HIGH);
    delay(100);
    digitalWrite(13, LOW);
    delay(900);
}

Она, как говорилось, вызывается сразу после setup. И вызывается снова и снова как только сама заканчивается. Функция loop называется основным циклом программы и идеологически предназначена для выполнения полезной работы. В нашем случае полезная работа — мигание светодиодом.

Пройдёмся по выражениям по порядку. Итак, первое выражение — это вызов встроенной функции digitalWrite. Она предназначена для подачи на заданный пин логического нуля (LOW, 0 вольт) или логической единицы (HIGH, 5 вольт) В функцию digitalWrite передаётся 2 аргумента: номер пина и логическое значение. В итоге, первым делом мы зажигаем светодиод на 13-м пине, подавая на него 5 вольт.

Как только это сделано процессор моментально приступает к следующему выражению. У нас это вызов функции delay. Функция delay — это, опять же, встроенная функция, которая заставляет процессор уснуть на определённое время. Она принимает всего один аргумент: время в миллисекундах, которое следует спать. В нашем случае это 100 мс.

Пока мы спим всё остаётся как есть, т.е. светодиод продолжает гореть. Как только 100 мс истекают, процессор просыпается и тут же переходит к следующему выражению. В нашем примере это снова вызов знакомой нам встроенной функции digitalWrite. Правда на этот раз вторым аргументом мы передаём значение LOW. То есть устанавливаем на 13-м пине логический ноль, то есть подаём 0 вольт, то есть гасим светодиод.

После того, как светодиод погашен мы приступаем к следующему выражению. И снова это вызов функции delay. На этот раз мы засыпаем на 900 мс.

Как только сон окончен, функция loop завершается. По факту завершения «нечто» тут же вызывает её ещё раз и всё происходит снова: светодиод поджигается, горит, гаснет, ждёт и т.д.

Если перевести написанное на русский, получится следующий алгоритм:

  1. Поджигаем светодиод

  2. Спим 100 миллисекунд

  3. Гасим светодиод

  4. Спим 900 миллисекунд

  5. Переходим к пункту 1

Таким образом мы получили Arduino с маячком, мигающим каждые 100 + 900 мс = 1000 мс = 1 сек.

Что можно изменить

Давайте пользуясь только полученными знаниями сделаем несколько вариаций программы, чтобы лучше понять принцип.

Вы можете подключить внешний светодиод или другое устройство, которым нужно «мигать» на другой пин. Например, на 5-й. Как в этом случае должна измениться программа? Мы должны всюду, где обращались к 13-му пину заменить номер на 5-й:

void setup()
{
    pinMode(5, OUTPUT);
}
 
void loop()
{
    digitalWrite(5, HIGH);
    delay(100);
    digitalWrite(5, LOW);
    delay(900);
}

Компилируйте, загружайте, проверяйте.

Что нужно сделать, чтобы светодиод мигал 2 раза в секунду? Уменьшить время сна так, чтобы в сумме получилось 500 мс:

void setup()
{
    pinMode(5, OUTPUT);
}
 
void loop()
{
    digitalWrite(5, HIGH);
    delay(50);
    digitalWrite(5, LOW);
    delay(450);
}

Как сделать так, чтобы светодиод при каждом «подмигивании» мерцал дважды? Нужно поджигать его дважды с небольшой паузой между включениями:

void setup()
{
    pinMode(5, OUTPUT);
}
 
void loop()
{
    digitalWrite(5, HIGH);
    delay(50);
    digitalWrite(5, LOW);
    delay(50);
    digitalWrite(5, HIGH);
    delay(50);
    digitalWrite(5, LOW);
    delay(350);
}

Как сделать так, чтобы в устройстве были 2 светодиода, которые мигали бы каждую секунду поочерёдно? Нужно общаться с двумя пинами и работать в loop то с одним, то с другим:

void setup()
{
    pinMode(5, OUTPUT);
    pinMode(6, OUTPUT);
}
 
void loop()
{
    digitalWrite(5, HIGH);
    delay(100);
    digitalWrite(5, LOW);
    delay(900);
    digitalWrite(6, HIGH);
    delay(100);
    digitalWrite(6, LOW);
    delay(900);
}

Как сделать так, чтобы в устройстве были 2 светодиода, которые переключались бы на манер железнодорожного светофора: горел бы то один то другой? Нужно просто не выключать горящий светодиод тут же, а дожидаться момента переключения:

void setup()
{
    pinMode(5, OUTPUT);
    pinMode(6, OUTPUT);
}
 
void loop()
{
    digitalWrite(5, HIGH);
    digitalWrite(6, LOW);
    delay(1000);
    digitalWrite(5, LOW);
    digitalWrite(6, HIGH);
    delay(1000);
}

Можете проверить другие идеи самостоятельно. Как видите, всё просто!

О пустом месте и красивом коде

В языке C++ пробелы, переносы строк, символы табуляции не имеют большого значения для компилятора. Там где стоит пробел, может быть перенос строки и наоборот. На самом деле 10 пробелов подряд, 2 переноса строки и ещё 5 пробелов — это всё эквивалент одного пробела.

Пустое пространство — это инструмент программиста, с помощью которого можно или сделать программу понятной и наглядной, или изуродовать до неузнаваемости. Например, вспомним программу для мигания светодиодом:

void setup()
{
    pinMode(5, OUTPUT);
}
 
void loop()
{
    digitalWrite(5, HIGH);
    delay(100);
    digitalWrite(5, LOW);
    delay(900);
}

Мы можем изменить её так:

void setup(
)
    {
pinMode(5, OUTPUT);
    }
 
        void loop
    () {
digitalWrite(5,HIGH);
delay(100
)
;
    digitalWrite(5,LOW);
    delay(900); }

Всё, что мы сделали — немного «поработали» с пустым пространством. Теперь можно наглядно видеть разницу между стройным кодом и нечитаемым.

Чтобы следовать негласному закону оформления программ, который уважается на форумах, при чтении другими людьми, легко воспринимается вами же, следуйте нескольким простым правилам:

1. Всегда, при начале нового блока между { и } увеличивайте отступ. Обычно используют 2 или 4 пробела. Выберите одно из значений и придерживайтесь его всюду.

Плохо:

void loop()
{
digitalWrite(5, HIGH);
delay(100);
digitalWrite(5, LOW);
delay(900);
}

Хорошо:

void loop()
{
    digitalWrite(5, HIGH);
    delay(100);
    digitalWrite(5, LOW);
    delay(900);
}

2. Как и в естественном языке: ставьте пробел после запятых и не ставьте до.

Плохо:

digitalWrite(5,HIGH);
digitalWrite(5 , HIGH);
digitalWrite(5 ,HIGH);

Хорошо:

digitalWrite(5, HIGH);

3. Размещайте символ начала блока { на новой строке на текущем уровне отступа или в конце предыдущей. А символ конца блока } на отдельной строке на текущем уровне отступа:

Плохо:

void setup()
{
    pinMode(5, OUTPUT); }
 
void setup()
    {
    pinMode(5, OUTPUT);
    }
 
void setup()
        {
    pinMode(5, OUTPUT);
        }

Хорошо:

void setup()
{
    pinMode(5, OUTPUT); 
}
 
void setup() {
    pinMode(5, OUTPUT); 
}

4. Используйте пустые строки для разделения смысловых блоков:

Хорошо:

void loop()
{
    digitalWrite(5, HIGH);
    delay(100);
    digitalWrite(5, LOW);
    delay(900);
    digitalWrite(6, HIGH);
    delay(100);
    digitalWrite(6, LOW);
    delay(900);
}

Ещё лучше:

void loop()
{
    digitalWrite(5, HIGH);
    delay(100);
 
    digitalWrite(5, LOW);
    delay(900);
 
    digitalWrite(6, HIGH);
    delay(100);
 
    digitalWrite(6, LOW);
    delay(900);
}

О точках с запятыми

Вы могли заинтересоваться: зачем в конце каждого выражения ставится точка с запятой? Таковы правила C++. Подобные правила называются синтаксисом языка. По символу ; компилятор понимает где заканчивается выражение.

Как уже говорилось, переносы строк для него — пустой звук, поэтому ориентируется он на этот знак препинания. Это позволяет записывать сразу несколько выражений в одной строке:

void loop()
{
    digitalWrite(5, HIGH); delay(100); digitalWrite(5, LOW); delay(900);
}

Программа корректна и эквивалентна тому, что мы уже видели. Однако писать так — это дурной тон. Код гораздо сложнее читается. Поэтому если у вас нет 100% веских причин писать в одной строке несколько выражений, не делайте этого.

О комментариях

Одно из правил качественного программирования: «пишите код так, чтобы он был настолько понятным, что не нуждался бы в пояснениях». Это возможно, но не всегда. Для того, чтобы пояснить какие-то не очевидные моменты в коде его читателям: вашим коллегам или вам самому через месяц, существуют так называемые комментарии.

Это конструкции в программном коде, которые полностью игнорируются компилятором и имеют значение только для читателя. Комментарии могут быть многострочными или однострочными:

/*
   Функция setup вызывается самой первой,
   при подаче питания на Arduino
 
   А это многострочный комментарий
 */
void setup()
{
    // устанавливаем 13-й пин в режим вывода
    pinMode(13, OUTPUT);
}
 
void loop()
{
    digitalWrite(13, HIGH);
    delay(100); // спим 100 мс
    digitalWrite(13, LOW);
    delay(900);
}

Как видите, между символами /* и */ можно писать сколько угодно строк комментариев. А после последовательности // комментарием считается всё, что следует до конца строки.

Итак, надеемся самые основные принципы составления написания программ стали понятны. Полученные знания позволяют программно управлять подачей питания на пины Arduino по определённым временны́м схемам. Это не так уж много, но всё же достаточно для первых экспериментов.

Среда разработки Arduino | Аппаратная платформа Arduino

Среда разработки Arduino состоит из встроенного текстового редактора программного кода, области сообщений, окна вывода текста(консоли), панели инструментов с кнопками часто используемых команд и нескольких меню. Для загрузки программ и связи среда разработки подключается к аппаратной части Arduino.

Скачать

Последнюю версию можно найти по этой ссылке
http://www.arduino.cc/en/Main/Software

Полезные ссылки:

Программа, написанная в среде Arduino, называется скетч. Скетч пишется в текстовом редакторе, имеющем инструменты вырезки/вставки, поиска/замены текста. Во время сохранения и экспорта проекта в области сообщений появляются пояснения, также могут отображаться возникшие ошибки. Окно вывода текста(консоль) показывает сообщения Arduino, включающие полные отчеты об ошибках и другую информацию. Кнопки панели инструментов позволяют проверить и записать программу, создать, открыть и сохранить скетч, открыть мониторинг последовательной шины:

Verify/Compile
Проверка программного кода на ошибки, компиляция.

Stop
Остановка мониторинга последовательной шины(Serial monitor) или затемнение других кнопок.

New
Создание нового скетча.

Open
Открытие меню доступа ко всем скетчам в блокноте. Открывается нажатием в текущем окне.

Примечание: из-за наличия ошибки в Java данное меню не может прокручиваться; при необходимости открыть скетч из этого списка проследуйте в меню File | Sketchbook.

Save
Сохранение скетча.

Upload to I/O Board
Компилирует программный код и загружает его в устройство Arduino. Описание загрузки приведено ниже.

Serial Monitor
Открытие мониторинга последовательной шины (Serial monitor).

Дополнительные команды сгруппированы в пять меню: File, Edit, Sketch, Tools, Help. Доступность меню определяется работой, выполняемой в данный момент.

Edit

  • Copy for Discourse
    Копирует в буфер обмена подходящий для размещения на форуме код скетча с выделением синтаксиса.
  • Copy as HTML
    Копирует код скетча в буфер обмена как HTML код, для размещения на веб-страницах.

Sketch

  • Verify/Compile
    Проверка скетча на ошибки.
  • Import Library
    Добавляет библиотеку в текущий скетч, вставляя директиву #include в код скетча. Подробная информация в описании библиотек ниже (Libraries).
  • Show Sketch Folder
    Открывает папку, содержащую файл скетча, на рабочем столе.
  • Add File…
    Добавляет файл в скетч (файл будет скопирован из текущего места расположения). Новый файл появляется в новой закладке в окне скетча. Файл может быть удален из скетча при помощи меню закладок.

Tools

  • Auto Format
    Данная опция оптимизирует код, например, выстраивает в одну линию по вертикали открывающую и закрывающую скобки и помещает между ними утверждение.
  • Board
    Выбор используемой платформы. Список с описанием платформ приводится ниже.
  • Serial Port
    Меню содержит список последовательных устройств передачи данных (реальных и виртуальных) на компьютере. Список обновляется автоматически каждый раз при открытии меню Tools.
  • Burn Bootloader
    Пункты данного меню позволяют записать Загрузчик (Bootloader) в микроконтроллер на платформе Arduino. Данное действие не требуется в текущей работе с Arduino, но пригодится, если имеется новый ATmega (без загрузчика). Перед записью рекомендуется проверить правильность выбора платформы из меню. При использовании AVR ISP необходимо выбрать соответствующий программатору порт из меню Serial Port.
Блокнот (Sketchbook)

Средой Arduino используется принцип блокнота: стандартное место для хранения программ (скетчей). Скетчи из блокнота открываются через меню File > Sketchbook или кнопкой Open на панели инструментов. При первом запуске программы Arduino автоматически создается директория для блокнота. Расположение блокнота меняется через диалоговое окно Preferences.

Закладки, Файлы и Компиляция

Позволяют работать с несколькими файлами скетчей (каждый открывается в отдельной закладке). Файлы кода могут быть стандартными Arduino (без расширения), файлами С (расширение *.с), файлами С++ (*.срр) или головными файлами (.h).

Загрузка скетча в Arduino

Перед загрузкой скетча требуется задать необходимые параметры в меню Tools > Board и Tools > Serial Port. Платформы описываются далее по тексту. В ОС Mac последовательный порт может обозначаться как dev/tty.usbserial-1B1 (для платы USB) или /dev/tty.USA19QW1b1P1.1 (для платы последовательной шины, подключенной через адаптер Keyspan USB-to-Serial). В ОС Windows порты могут обозначаться как COM1 или COM2 (для платы последовательной шины) или COM4, COM5, COM7 и выше (для платы USB). Определение порта USB производится в поле Последовательной шины USB Диспетчера устройств Windows. В ОС Linux порты могут обозначаться как /dev/ttyUSB0, /dev/ttyUSB1.

После выбора порта и платформы необходимо нажать кнопку загрузки на панели инструментов или выбрать пункт меню File > Upload to I/O Board. Современные платформы Arduino перезагружаются автоматически перед загрузкой. На старых платформах необходимо нажать кнопку перезагрузки. На большинстве плат во время процесса будут мигать светодиоды RX и TX. Среда разработки Arduino выведет сообщение об окончании загрузки или об ошибках.

При загрузке скетча используется Загрузчик (Bootloader) Arduino, небольшая программа, загружаемая в микроконтроллер на плате. Она позволяет загружать программный код без использования дополнительных аппаратных средств. Загрузчик (Bootloader) активен в течении нескольких секунд при перезагрузке платформы и при загрузке любого из скетчей в микроконтроллер. Работа Загрузчика (Bootloader) распознается по миганию светодиода (13 пин) (напр.: при перезагрузке платы).

Библиотеки

Библиотеки добавляют дополнительную функциональность скетчам, например, при работе с аппаратной частью или при обработке данных. Для использования библиотеки необходимо выбрать меню Sketch > Import Library. Одна или несколько директив #include будут размещены в начале кода скетча с последующей компиляцией библиотек и вместе со скетчем. Загрузка библиотек требует дополнительного места в памяти Arduino. Неиспользуемые библиотеки можно удалить из скетча убрав директиву #include.

На Arduino.cc имеется список библиотек. Некоторые библиотеки включены в среду разработки Arduino. Другие могут быть загружены с различных ресурсов. Для установки скачанных библиотек необходимо создать директорию «libraries» в папке блокнота и затем распаковать архив. Например, для установки библиотеки DateTime ее файлы должны находится в подпапке /libraries/DateTime папки блокнота. 

Смотрите данную инструкцию для написания собственной библиотеки.  

Аппаратные средства других разработчиков

Поддерживаемые аппаратные средства других производителей добавляются в соответствующую подпапку папки блокнота. Устанавливаемые платформы могут включать собственные характеристики (в меню платформы), корневые библиотеки, загрузчик(Bootloader) и характеристики программатора. Для установки требуется распаковать архив в созданную папку.  (Запрещено использовать наименование папки «arduino», т.к. могут быть перезаписаны встроенные данные платформы Arduino.) Для деинсталляции данных удаляется соответствующая директория.

Подробная информация по созданию сборок описаний аппаратных средств других производителей находится на страницах сайта Google Code.

Мониторинг последовательной шины (Serial Monitor)

Отображает данные посылаемые в платформу Arduino (плата USB или плата последовательной шины). Для отправки данных необходимо ввести текст и нажать кнопку Send или Enter. Затем выбирается скорость передачи из выпадающего списка, соответствующая значению Serial.begin в скетче. На ОС Mac или Linux платформа Arduino будет перезагружена (скетч начнется сначала) при подключении мониторинга последовательной шины.

Имеется возможность обмена информацией с платформой через программы Processing, Flash, MaxMSP и т.д. (см. подробности на странице описаний интерфейсов).

Настройки

Некоторые настройки изменяются в окне Preferences (меню Arduino в ОС Mac или File в ОС Windows и Linux). Остальные настройки находятся в файле, месторасположение которого указано в окне Preferences.

Платформы

Выбор платформы влияет на: параметры (напр.: скорость ЦП и скорость передачи данных), используемые при компиляции и загрузке скетчей и на настройки записи загрузчика (Bootloader) микроконтреллера. Некоторые характеристики платформ различаются только по последнему параметру (загрузка Bootloader), таким образом, даже при удачной загрузке с соответствующим выбором может потребоваться проверка различия перед записью загрузчика (Bootloader).

  • Arduino Duemilanove или Nano с ATmega328
    Тактовая частота ATmega328 16 МГц с возможностью автоматической перезагрузки. Используется для версий Arduino Pro или Pro Mini с ATmega328 на частоте 16 МГц (5 В).
  • Arduino Diecimila, Duemilanove, или Nano с ATmega168
    Тактовая частота ATmega168 16 МГц с возможностью автоматической перезагрузки. Компиляция и загрузка соответствует Arduino NG или старым версиям с ATmega168, но загрузка Bootloader имеет короткий таймаут (при перезагрузке светодиод пина 13 мигает один раз). Используется для версий Arduino Pro и Pro Mini с ATmega168 на частоте 16 МГц (5 В). 
  • Arduino Mega
    Тактовая частота ATmega1280 16 МГц с возможностью автоматической перезагрузки.
  • Arduino Mini
    Соответствует Arduino NG или старым версиям с ATmega168 (напр.: тактовая частота ATmega168 16 МГц без возможности автоматической перезагрузки).
  • Arduino BT
    Тактовая частота ATmega168 16 МГц. Загрузка Bootloader происходит совместно с кодами для инициализации модуля Bluetooth.
  • LilyPad Arduino с ATmega328
    Тактовая частота ATmega328 8 МГц (3.3 В) с возможность автоматической перезагрузки. Соответствует Arduino Pro или Pro Mini (3.3 В, 8 МГц) с ATmega328.
  • LilyPad Arduino с ATmega168
    Тактовая частота ATmega168 8 МГц.

    Компиляция и загрузка соответствует Arduino Pro или Pro Mini (8 МГц) с ATmega168.

    Загруженный Bootloader имеет длинный таймаут (при перезагрузке светодиод пина 13 мигает три раза), т.к. оригинальные версии LilyPad не поддерживают автоматическую перезагрузку. Также не поддерживаются внешние часы и, следовательно, Bootloader конфигурирует загрузку внутренних 8 МГц часов в ATmega168.

    При наличии поздних версий LilyPad (с 6-контакным программным вводом) перед загрузкой Bootloader требуется выбрать Arduino Pro или Pro Mini (8 MHz) с ATmega168.

  • Arduino Pro или Pro Mini (3.3 В, 8 МГц) с ATmega328
    Тактовая частота ATmega328 8 МГц (3.3 В) с возможность автоматической перезагрузки. Соответствует LilyPad Arduino с ATmega328.
  • Arduino Pro или Pro Mini (3.3 В, 8 МГц) с ATmega168
    Тактовая частота ATmega168 8 МГц (3.3 В) с возможность автоматической перезагрузки.
  • Arduino NG или предыдущие версии с ATmega168
    Тактовая частота ATmega168 16 МГц без возможности автоматической перезагрузки. Компиляция и загрузка соответствует Arduino Diecimila или Duemilanove с ATmega168, но загрузка Bootloader имеет длинный таймаут (при перезагрузке светодиод пина 13 мигает три раза).
  • Arduino NG или предыдущие версии с ATmega8
    Тактовая частота ATmega8 16 МГц без возможности автоматической перезагрузки.

 

Отправить ответ

avatar
  Подписаться  
Уведомление о