Содержание

Тонгенератор (Онлайн воспроизведение звука на определенной заданной Вами частоте и громкости. Используется для настройки звучания или тестирования акустики/сабвуфера)

Главная   •   Сервисы   •   Тонгенератор (Онлайн воспроизведение звука на определенной заданной Вами частоте и громкости. Используется для настройки звучания или тестирования акустики/сабвуфера)

Как пользоваться тонгенератором для установки нужной частоты среза на регуляторе фильтра усилителя.

Для начала на вход усилителя нужно подать аудиосигнал с устройства (ПК, смартфон и т.д.), подключенного к интернету и воспроизводящего звук.

Все остальные устройства от входа усилителя нужно отключить.

Убедившись, что звук с подключенного к усилителю устройства воспроизводится можно начинать настройку фильтров усилителя.

Рассмотрим настройку фильтров усилителя на примере двухполосной системы, построенной на поканальном подключении к 4-х канальному усилителю.

Допустим, высокочастотники (твитера) подключены на выходы усилителя 1 и 2. Подключаем на соответствующие входы усилителя тонренератор.

Если твитер должен работать с ограничением в 4000 Гц — устанавливаем эту частоту на тонгенераторе. На усилителе, при этом, нужно установить регулятор HPF на более высокое значение (например на 8000 Гц или в крайнее положение ручки регулятора). Включаем тонгенератор и очень плавно и медленно поворачиваем ручку регулятора в обратном направлении до тех пор, пока не услышим в твитерах заданный тонсигнал. Как только громкость тонсигнала перестала прибавляться при повороте ручки — это означает, что фильтр усилителя установлен на заданной частоте в 4000 Гц.

Теперь нужно настроить мидбас.

Переключаем устройство с тонгенератором с входов 1 и 2 на входы 3 и 4.

Сначала настраиваем HPF на частоте, к примеру 65 Гц (настраивается так же как и для твитера). После того как настройка HPF закончена, переходим к настройке LPF (фильтра низких частот).

Устанавливается частота, например те же 4000 Гц, на тонгенераторе. Ручкой регулятора LPF на усилителе устанавливаем значение, ниже заданной частоты тонгенератора.

Включаем тонсигнал и медленно поворачиваем регулятор вперед.

Когда мы услышим в настраиваемом динамике сигнал тонгенератора и громкость его перестанет возрастать при повороте ручки — заданное значение фильтра установлено.

Все остальные компоненты системы настраиваются точно так же.

www.ural-auto.ru

Генератор высокой частоты. Схемы генератора ВЧ своими руками

Высокочастотные генераторы служат для образования колебаний электрического тока в интервале частот от нескольких десятков килогерц до сотен мегагерц. Такие устройства создают с применением контуров колебаний LС или резонаторов на кварцах, которые являются элементами задания частоты. Схемы работы остаются такими же. В некоторых цепях контуры гармонических колебаний заменяются кварцевыми резонаторами.

Генератор ВЧ

Устройство для остановки электросчетчика энергии служит для питания электроприборов бытового назначения. Его выходное напряжение 220 вольт, потребляемая мощность 1 киловатт. Если в приборе применить составляющие элементы с характеристиками мощнее, то от него можно запитывать более мощные устройства.

Такой прибор включается в розетку бытовой сети, от него идет питание на нагрузку потребителей. Схема электрических проводов не подвергается каким-либо изменениям. Систему заземления подключать нет необходимости. Счетчик при этом работает, но учитывает примерно 25% энергии сети.

Действие устройства остановки в подключении нагрузки не к питанию сети, а к конденсатору. Заряд этого конденсатора совпадает с синусоидой напряжения сети. Заряд происходит высокочастотными импульсами. Ток, который расходуется потребителями из сети, состоит из высокочастотных импульсов.

Счетчики (электронные) имеют преобразователь, который не чувствителен к высоким частотам. Поэтому, расход энергии импульсного вида счетчик учитывает с отрицательной погрешностью.

Схема прибора

Генератор высокой частоты

Главные составляющие элементы прибора: выпрямитель, емкость, транзистор. Конденсатор подключен по последовательной цепи с выпрямителем, когда выпрямитель производит работу на транзистор, заряжается в данный момент времени до размера напряжения линии питания.

Зарядка осуществляется частотными импульсами 2 кГц. На нагрузке и емкости напряжение близко к синусу на 220 вольт. Для ограничения тока транзистор в период заряда емкости, предназначен резистор, подключенный с каскадом ключа по последовательной схеме.

Генератор выполнен на логических элементах. Он образует импульсы 2 кГц с амплитудой на 5 вольт. Сигнальная частота генератора определена свойствами элементов С2-R7. Такие свойства могут использоваться для настройки максимальной погрешности учета расхода энергии. Создатель импульсов выполнен на транзисторах Т2 и Т3. Он предназначен для управления ключом Т1. Создатель импульсов рассчитан так, что транзистор Т1 начинает насыщаться в открытом виде. Поэтому на нем расходуется небольшая мощность. Транзистор Т1 тоже закрывается.

Выпрямитель, трансформатор и остальные элементы создают блок питания низкой стороны схемы. Такой блок питания работает на 36 В для микросхемы генератора.

Генератор высокой частоты

Сначала делают проверку блока питания отдельно от схемы с низким напряжением. Блок должен создавать ток выше 2-х ампер и напряжение 36 вольт, 5 вольт для генератора с малой мощностью. Далее делают наладку генератора. Для этого отключают силовую часть. От генератора должны идти импульсы размером 5 вольт, частотой 2 килогерца. Для настройки выбирают конденсаторы С2 и С3.

Создатель импульсов при проверке должен выдавать импульсный ток на транзисторе около 2 ампер, иначе транзистор выйдет из строя. Для проверки такого состояния включают шунт, при выключенной силовой схеме. Напряжение импульсов на шунте измеряют осциллографом на работающем генераторе. Основываясь на расчете, вычисляют значение тока.

Далее, проверяют силовую часть. Восстанавливают все цепи по схеме. Конденсатор отключают, вместо нагрузки применяют лампу. При подключении прибора напряжение при нормальной работоспособности прибора должно равняться 120 вольт. На осциллографе видно напряжение нагрузки импульсами с частотой, определенной генератором. Импульсы модулируются синусом напряжения сети. На сопротивлении R6 – импульсами выпрямленного напряжения.

При исправности устройства включают емкость С1, в результате напряжение повышается. При дальнейшем повышении размера емкости С1 доходит до 220 вольт. Во время этого процесса нужно контролировать температуру транзистора Т1. При сильном нагревании на небольшой нагрузке возникает опасность, что он не вошел в режим насыщения или не осуществилось полное закрытие. Тогда нужно сделать настройку создания импульсов. На практике такого нагрева не наблюдается.

В итоге, подключается нагрузка по номиналу, определяется емкость С1 такого значения, чтобы создать для нагрузки напряжение 220 вольт. Емкость С1 выбирают осторожно, с небольших значений, потому что повышение емкости резко повышает ток транзистора Т1. Амплитуду токовых импульсов определяют, если подключить осциллограф к резистору R6 по параллельной схеме. Импульсный ток не поднимется выше допускаемого для определенного транзистора. Если нужно, то ток ограничивают путем повышения значения сопротивления резистора R6. Оптимальным решением будет выбрать наименьший размер емкости конденсатора С1.

При данных радиодеталях прибор рассчитан на потребление 1 киловатта. Чтобы повысить мощность потребления, нужно применить более мощные силовые элементы ключа на транзисторе и выпрямителя.

При выключенных потребителях устройство расходует немалую мощность, учитываемую счетчиком. Поэтому лучше выключать этот прибор при отключенной нагрузки.

Принцип работы и конструкция полупроводникового генератора ВЧ

Генератор высокой частоты

Генераторы высокой частоты выполнены на широко применяемой схеме. Различия генераторов заключаются в цепочке RС эмиттера, которая задает транзистору режим по току. Для образования обратной связи в цепи генератора от индуктивной катушки создают вывод клеммы. Генераторы ВЧ работают нестабильно на биполярных транзисторах из-за влияния транзистора на колебания. Свойства транзистора могут измениться при колебаниях температуры и разности потенциалов. Поэтому образующаяся частота не остается постоянной величиной, а «плавает».

Чтобы транзистор не влиял на частоту, нужно уменьшить связь контура колебаний с транзистором до минимальной. Для этого нужно снизить размеры емкостей. На частоту оказывает влияние изменение нагрузочного сопротивления. Поэтому нужно между нагрузкой и генератором включить повторитель. Для подключения напряжения к генератору применяют постоянные блоки питания с небольшими импульсами напряжения.

Генератор высокой частоты

Генераторы, сделанные по схеме, изображенной выше, имеют максимальные характеристики, собраны на полевиках. Во многих схемах генераторов ВЧ сигнал выхода снимается с контура колебаний через небольшой конденсатор, а также с электродов транзистора. Здесь нужно учесть, что вспомогательная нагрузка контура колебаний изменяет его свойства и частоту работы. Часто это свойство применяют для замера разных физических величин, для проверки технологических параметров.

Генератор высокой частоты

На этой схеме показан измененный генератор высокой частоты. Значение обратной связи и лучшие условия возбуждения выбирают при помощи элементов емкости.

Из всего количества схем генераторов выделяются варианты с ударным возбуждением. Они действуют за счет возбуждения контура колебаний сильным импульсом. В итоге электронного удара в контуре образуются затухающие колебания по синусоидальной амплитуде. Такое затухание происходит из-за потерь в контуре гармонических колебаний. Скорость таких колебаний вычисляется по добротности контура.

Сигнал ВЧ на выходе будет стабильным в том случае, если импульсы будут иметь высокую частоту. Такой вид генераторов самый старый из всех рассматриваемых.

Ламповый генератор ВЧ

Чтобы получить плазму с определенными параметрами, необходимо подвести необходимую величину к разряду мощности. Для эмиттеров на плазме, работа которых основана на разряде высокой частоты, применяется схема подведения мощности. Схема изображена на рисунке.

Генератор высокой частоты

Усилитель мощности на лампах преобразовывает энергию электрического постоянного тока в переменный ток. Главным элементом работы генератора стала электронная лампа. В нашей схеме это тетроды ГУ-92А. Это устройство представляет собой электронную лампу на четырех электродах: анод, экранирующая сетка, управляющая сетка, катод.

Сетка управления, на которую поступает сигнал высокой частоты малой амплитуды, закрывает часть электронов, когда сигнал характеризуется отрицательной амплитудой, и повышает ток на аноде, при положительном сигнале. Экранирующая сетка создает фокус электронного потока, увеличивает усиление лампы, снижает емкость прохода между сеткой управления и анодом в сравнении с 3-электродной системой в сотни раз. Это уменьшает выходные искажения частот на лампе при действии на высоких частотах.

Генератор состоит из цепей:

  1. Цепь накала с питанием низкого напряжения.
  2. Цепь возбуждения и питания сетки управления.
  3. Цепь питания сетки экрана.
  4. Анодная цепь.

Между антенной и выходом генератора находится ВЧ трансформатор. Он предназначен для отдачи мощности на эмиттер от генератора. Нагрузка контура антенны не равна величине отбираемой наибольшей мощности от генератора. Эффективность передачи мощности от каскада выхода усилителя к антенне может быть достигнута при согласовании. Элементом согласования выступает емкостный делитель в цепи контура анода.

Генератор высокой частоты

Элементом согласования может работать трансформатор. Его наличие необходимо в разных согласующих схемах, потому что без трансформатора не осуществится высоковольтная развязка.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Поделиться ссылкой:

elektronchic.ru

Генератор звуковой частоты | Практическая электроника

Что такое генератор звука и с чем его едят? Итак, давайте первым делом определимся со значением слова “генератор”. Генераторот лат. generator – производитель. То есть объясняя домашним языком, генератор – это устройство, которое производит что-либо. Ну а что такое звук? Звук – это колебания, которые может различить наше ухо. Кто-то пёрнул, кто-то икнул, кто-то кого то послал – все это звуковые волны, которые слышит наше ухо. Нормальный человек может слышать колебания в диапазоне частот от 16 Гц и до 20 Килогерц.  Звук до 16 Герц называют инфразвуком, а звук более 20 000 Герц – ультразвуком.

Из всего вышесказанного можно сделать вывод, что генератор звука – это устройство, которое излучает какой-либо звук. Все элементарно и просто 😉 А почему бы его нам не собрать? Схему в студию!

Как мы видим, моя схема состоит из:

– конденсатора емкостью 47 наноФарад

– резистора 20 Килоом

– транзисторов КТ315Г и КТ361Г, можно с другими буквами или вообще какие-нибудь другие маломощные

– маленькая динамическая головка

– кнопочка, но можно сделать и без нее.

На  макетной пл ате все это выглядит примерно вот так:

А вот и транзисторы:

Слева – КТ361Г, справа – КТ315Г.  У  КТ361 буква находится посередине  на корпусе, а у 315 – слева.

Эти транзисторы являются комплиментарными парами друг другу.

А вот и видео:

Частоту звука можно менять, меняя значение резистора или конденсатора. Также частота увеличивается, если повышать напряжение питания. При 1,5 Вольт частота будет ниже, чем при 5 Вольтах. У меня на видео напряжение выставлено 5 Вольт.

Знаете в чем еще прикол? У девчат диапазон восприятия звуковых волн намного больше, чем у парней. Например, парни могут слышать до 20 Килогерц, а девчата уже даже до 22 Килогерц. Этот звук настолько писклявый, что он очень сильно действует на нервы. Что я хочу этим сказать?)) Да да, почему бы нам не подобрать такие номиналы резистора или конденсатора, чтобы девчата слышали этот звук, а парни нет? Прикиньте, сидите вы на парах, врубаете свою шарманку и смотрите на недовольные рожи одногруппниц (классниц). Для того, чтобы настроить прибор, нам конечно понадобится девочка, которая помогла бы услышать этот звук. Не все девчата также воспринимают этот высокочастотный звук. Но самый-самый прикол в том, что невозможно узнать, откуда идет звучание))).  Только если что, я вам это не говорил).

www.ruselectronic.com

Кварцевый генератор | Практическая электроника

Кварцевый генератор

Что такое генератор? Генератор – это по сути устройство, которое преобразует один вид энергии в другой. В электронике очень часто можно услышать словосочетание  “генератор электрической энергии, генератор частоты, генератор функций”  и тд.

Кварцевый генератор представляет из себя генератор частоты и имеет в своем составе кварцевый резонатор. В основном  кварцевые генераторы бывают двух видов:

те, которые могут выдавать синусоидальный сигнал

и те, которые выдают прямоугольный сигнал

Чаще всего в электронике используется прямоугольный сигнал

Схема Пирса

Для того, чтобы возбудить кварц на частоте резонанса, нам надо собрать схему. Самая простая схема для возбуждения кварца – это классический генератор Пирса, который состоит всего лишь из одного полевого транзистора и небольшой обвязки из четырех радиоэлементов:

Пару слов о том как работает схема. В схеме  есть положительная обратная связь и в ней начинают возникать автоколебания. Но что такое положительная обратная связь?

В школе всем вам ставили прививки на реакцию Манту, чтобы определить, если у вас тубик или нет. Через некоторое время приходили медсестры и линейкой замеряли вашу реакцию кожи на эту прививку

Кварцевый генератор

Когда ставили эту прививку, нельзя было чесать место укола. Но мне, тогда еще салаге, было по барабану. Как только я начинал тихонько чесать место укола, мне хотелось чесать еще больше)) И вот скорость руки, которая чесала прививку, у меня замерла на каком-то пике, потому что совершать колебания рукой у меня максимум получалось с частотой Герц  в 15.  Прививка набухала на пол руки))  И даже  один раз меня водили сдавать кровь в подозрении на туберкулез, но как оказалось, не нашли. Оно и неудивительно ;-).

Так что это я вам тут рассказываю хохмы из жизни? Дело в том, что эта чесотка прививки самая что ни на есть положительная обратная связь. То есть пока я ее не трогал, чесать не хотелось. Но как только тихонько почесал, стало чесаться больше и я стал чесать больше, и чесаться стало еще больше и тд.  Если бы на мою руку не было физический ограничений, то наверняка, место прививки уже бы стерлось до мяса. Но я мог махать рукой только с какой-то максимальной частотой. Так вот, такой же принцип и у кварцевого генератора ;-). Чуть подал импульс, и он начинает разгоняться и уже останавливается только на частоте параллельного резонанса ;-). Скажем так, “физическое ограничение”.

Первым делом нам надо подобрать катушку индуктивности. Я взял тороидальный сердечник и намотал из провода МГТФ несколько витков

Весь процесс контролировал с помощью LC-метра, добиваясь номинала, как на схеме – 2,5 мГн. Если не доставало, прибавлял витки, если перебарщивал номинал, то убавлял. В результате добился  вот такой индуктивности:

Транзистора у меня в загашнике не нашлось, и в местном радиомагазине его тоже не было. Поэтому, пришлось заказывать на Али. Кому интересно, брал здесь.

Его правильное название: транзистор полевой с каналом N типа.

Распиновка слева-направо: Сток – Исток – Затвор

Ну а дальше дело за малым. Собираем схемку:

Небольшое лирическое отступление.

Как вы видите, я пытался максимально сократить связи между радиоэлементами. Дело все в том, что все радиоэлементы имеют свои паразитные параметры. Чем длиннее их выводы, а также провода, соединяющие эти радиоэлементы в схеме, тем хуже будет работать схема, а то и вовсе “не зафурычит”. Да и вообще, схемы с кварцевым резонатором на печатных платах трассируют не просто так от балды. Здесь есть свои тонкие нюансы. Мельчайшие паразитные параметры могут испоганить весь сигнал на выходе такого генератора.

Итак, кварцевый генератор мы собрали, напряжение подали, осталось только снять сигнал с выхода нашего самопального генератора. За дело берется цифровой осциллограф OWON SDS6062

Первым  делом я взял кварц на самую большую частоту, которая у меня есть: 32 768 Мегагерц. Не путайте его с часовым кварцем (о нем пойдет речь ниже).

генерация колебаний

Не, ну а что вы хотели? Хотели увидеть идеальную синусоиду? Не тут-то было. Сказались паразитные параметры плохо собранной схемы и монтажа.

Внизу в левом углу осциллограф нам показывает частоту:

Кварцевый генератор

Как вы видите 32,77 Мегагерц.  Главное, что наш кварц живой и схемка работает!

Давайте возьмем кварц с частотой 27 Мегагерц:

Показания у меня прыгали. Заскринил, что успел:

Кварцевый генератор

Частоту тоже более-менее показал верно.

 Ну и аналогично проверяем все остальные кварцы, которые у меня есть.

Вот осциллограмма  кварца на 16 Мегагерц:

Кварцевый генератор

Осциллограф показал частоту ровнехонько 16 Мегагерц.

Здесь поставил кварц на 6 Мегагерц:

Кварцевый генератор

Ровно 6 Мегагерц

На 4 Мегагерца:

Кварцевый генератор

Все ОК.

Ну и возьмем еще советский на 1 Мегагерц. Вот так он выглядит:

Сверху написано 1000 Килогерц = 1МегаГерц 😉

Смотрим осциллограмму:

Кварцевый генератор

Рабочий!

При большом желании можно даже замерять частоту китайским генератором-частотомером:

400 Герц погрешность для старенького советского кварца не очень и много. Но лучше, конечно, воспользоваться нормальным профессиональным частотомером 😉

Часовой кварц

С часовым кварцем кварцевый генератор по схеме Пирса отказался работать.

часовой кварц

“Что еще за часовой кварц?” – спросите вы.  Часовой кварц – это кварц с частотой в 32 768 Герц. Почему на нем такая странная частота? Дело все в том, что 32 768 это и есть 215. Такой кварц работает в паре с 15-разрядной микросхемой-счетчиком. Это наша микросхема К176ИЕ5.

к176ие5

Принцип работы этой микросхемы такой: после того, как она сосчитает 32 768 импульсов, на одной из ножек она выдает импульс. Этот импульс на ножке  с кварцевым резонатором на 32 768 Герц появляется ровно один раз в секунду. А как вы помните,  колебание один раз в секунду – это и есть 1 Герц. То есть на этой ножке импульс будет выдаваться с частотой в 1 Герц. А раз это так, то почему бы не использовать это в часах? Отсюда и пошло название – часовой кварц.

В настоящее время в наручных часах и других мобильных гаджетах этот счетчик и кварцевый резонатор встроены в одну микросхему и обеспечивают не только счет секунд, но и целый ряд других функций, типа будильника, календаря и тд. Такие микросхемы называется RTC (Real Time Clock) или в переводе с буржуйского Часы Реального Времени.

Схема Пирса для прямоугольного сигнала

Итак, вернемся к схеме Пирса. Предыдущая схема Пирса генерирует синусоидальный сигнал

Но также есть видоизмененная схема Пирса для прямоугольного сигнала

А вот и она:

Номиналы некоторых радиоэлементов можно менять в достаточно широком диапазоне. Например, конденсаторы С1 и С2 могут быть в диапазоне от 10 и до 100 пФ. Тут правило такое: чем меньше частота кварца, тем меньше должна быть емкость конденсатора. Для часовых кварцев конденсаторы можно поставить номиналом в 15-18 пФ. Если кварц с частотой от 1 до 10 Мегагерц, то можно поставить 22-56 пФ. Если не хотите заморачиваться, то просто поставьте конденсаторы емкостью в 22 пФ. Точно не прогадаете.

Также небольшая фишка на заметку: меняя значение конденсатора С1 можно настраивать частоту резонанса в очень тонких пределах.

Резистор R1 можно менять от 1 и до 20 МОм, а R2 от нуля и до 100 кОм. Тут тоже есть правило: чем меньше частота кварца, тем больше значение этих резисторов и наоборот.

Максимальная частота кварца, которую можно вставить в схему, зависит от быстродействия инвертора КМОП. Я взял микросхему 74HC04. Она не слишком быстродействующая. Состоит из шести инверторов, но использовать  мы будем только один инвертор:

Вот ее распиновка:

Кварцевый генератор

Подключив к этой схеме часовой кварц, осциллограф выдал вот такую осциллограмму:

Кварцевый генератор

Ну как всегда всю картинку испортили паразитные параметры монтажа. Но, обратите внимание на частоту. Осциллограф почти верно ее показал с небольшой погрешностью. Ну оно и понятно, так как главная функция осциллографа отображать сигнал, а не считать частоту)

Кстати, вам эта часть схемы ничего не напоминает?

Кварцевый генератор

Не эта ли часть схемы используется для тактирования микроконтроллеров AVR?

Она самая! Просто недостающие элементы схемы уже есть в самом МК 😉

Плюсы кварцевых генераторов

Плюсы кварцевых генераторов частоты – это высокая частотная стабильность. В основном это 10-5 – 10-6 от номинала или, как часто говорят,  ppm (от англ. parts per million) — частей на миллион, то есть одна миллионная или числом 10-6. Отклонение частоты  в ту или иную сторону в кварцевом генераторе в основном связано с изменением температуры окружающей среды, а также со старением кварца. При старении кварца, частота кварцевого генератора стает чуточку меньше с каждым годом примерно на 1,8х10-7 от номинала. Если, скажем, я взял кварц с частотой в 10 Мегагерц ( 10 000 000 Герц) и поставил его в схему, то за год его частота уйдет примерно на 2 Герца в минус 😉 Думаю, вполне терпимо.

В настоящее время кварцевые генераторы выпускают в виде законченных модулей. Некоторые фирмы, производящие такие генераторы,  достигают частотной стабильности  до 10-11 от номинала! Выглядят готовые модули примерно так:

кварцевые генераторы

или так

Кварцевый генераторкварцевый генератор 4 Мгц

Такие модули кварцевых генераторов в основном имеют 4 вывода.  Вот распиновка квадратного кварцевого генератора:

Кварцевый генератор

Давайте проверим один из них. На нем написано 1 МГц

Вот его вид сзади:

Вот его распиновка:

распиновка кварцевого генератора

Подавая постоянное напряжение от 3,3 и до 5 Вольт плюсом на 8, а минусом на 4, с выхода 5  я получил чистый ровный красивый меандр с частотой, написанной на кварцевом генераторе, то бишь 1 Мегагерц, с очень небольшими выбросами.

Кварцевый генератор

Ну прям загляденье!

Да и китайский генератор-частотомер показал точную частоту:

Отсюда делаем вывод: лучше купить готовый кварцевый генератор, чем самому убивать кучу времени и нервов на наладку схемы Пирса. Схема Пирса будет пригодна для проверки резонаторов и для ваших различных самоделок.

www.ruselectronic.com

Генератор функций UNIT | Описание, настройка, характеристики

Что такое генератор функций и чем он отличается от генератора частоты? Давайте как раз об этом и поговорим в нашей статье.

Что такое генератор функций

Не так давно на моем столе появился этот чудо-прибор. Сочетание дизайна и удобства использования очень даже ничего.

Итак, теперь давайте обо всем по порядку, что представляет из себя эта белая коробочка с кнопочками и с небольшим табло? Написано на ней “Function Generator”, то есть, в переводе с англ. “генератор функций”.

Что такое генератор функций? Это по сути источник периодических сигналов и не только, которые могут принимать любую форму и частоту, которую вы им зададите (в пределах рабочего диапазона прибора).

Знаете сколько тысяч баксов стоит такой фаршированный приборчик?)) Поэтому, это название слишком громкое для нашего героя. На самом же деле он представляет из себя просто крутой генератор частоты. Ну раз уж написано на нем, что он генератор функций, пусть так оно и будет.

Виды сигналов

Для простых обывателей и любителей пожарить канифоль, типа меня и вас, реальный генератор функций за +100500 баксов будет нецелесообразным приобретением, а на практике для нас бывает достаточно трех видов сигналов:

это синусоидальный

треугольный

и прямоугольный сигнал

Их более чем достаточно на все случаи жизни. В народе их называют синус, треугольник и прямоугольник, которые без проблем может выдать наш герой.

Как формировать сигналы

Для того, чтобы задать амплитуду сигнала, мы крутим крутилку “AMPLITUDE”. Здесь под этим словом понимается двойная амплитуда или как его еще называют “размах сигнала” или “амплитуда от пика до пика”.

Давайте зададим сигнал размахом в 10 В и частотой в 2 МГц. Для наблюдения сигнала нам понадобится осциллограф. Так как у меня есть цифровой осциллограф OWON SDS6062, поэтому я буду делать скрины с помощью него:

Итак, что имеем на генераторе:

Что имеем на осциллографе:

синусоиадльный сигнал на осциллографе

Ништяк)

Меняем форму сигнала на пилу:

треугольный сигнал

Нормальная пила.

Смотрим прямоугольный сигнал:

Генератор функций UNIT

Очень даже ничего 😉

Описание разъемов и кнопок

На панели такого прибора можно увидеть три заветные кнопочки переключения сигналов:

Слева на генераторе можно увидеть вот такие кнопки

Под внешним счетчиком здесь имеется ввиду какой-либо периодический сигнал с какого-нибудь генератора частоты либо схемы. Подавая такой сигнал на разъем нашего генератора функций, мы с легкостью можем определить частоту неизвестного сигнала вплоть до 10 Мегагерц. То есть в данном случае генератор функций выполняет роль частотомера.

Как вы уже заметили, на лицевой панели также имеются еще три разъема, кроме  разъема для счета импульсов:

VCF – Voltage Controlled Frequency. По нашему ГУН. Расшифровывается как Генератор Управляемый Напряжением. Само название говорит о том, что мы можем менять частоту сигнала с генератора функций, подавая на этот разъем какое-либо напряжение. В зависимости от того, какое напряжение мы подаем, такая и будет частота 😉 Например, подавая переменное напряжение на такой разъем, мы можем на выходе генератора функций получить  сигнал с переменной частотой.

TTL OUT.  ТТЛ – Транзисторно-Транзисторная-Логика. OUT – выход. Этот выход предназначен для тактирования логических микросхем, построенных на так называемой транзисторно-транзисторной логике. То есть это логические элементы, которые в своем составе имеют только биполярные транзисторы и резисторы. Такие микросхемы делают в основном на питание +5 В.

Логический ноль – это уровень напряжения от 0 и до +0,5 В. Уровень логической единички от 2,4 и до +5 В. Поэтому, с этого выхода мы получаем прямоугольный периодический сигнал с чередующимися нулями и единицами: 0101010101… Частоту такого сигнала выставляем с помощью крутилки и кнопок выбора диапазона.

OUTPUT. Выход с генератора. Именно с этого разъема мы и получаем необходимый нам сигнал с генератора функций.

Также небольшой интерес представляют из себя эти две кнопочки:

Написано “attention”, что значит “внимание”. На самом деле там должно быть написано “attenuator”. Аттенюатор – слово не наше, означает как “ослабить, смягчить”. Видать, китайцы сэкономили на переводчике с китайского на английский, так как и “Амплитуда” на генераторе тоже написана с косяками ))

Итак, что за кнопочки -20dB и -40dB? dB – это децибелы (как-нибудь надо накарябать про них статью). А пока вот вам ссылочка на онлайн-калькулятор. Я за вас уже все посчитал. -20dB это значит, что мы можем ослабить выдаваемый генератором сигнал в 10 раз. -40dB – в 100 раз. А если нажмем сразу на 2 кнопочки разом, то у нас в сумме получится -60dB. Следовательно, мы можем ослабить сигнал в 1000 раз.

Повыше также еще есть кнопочка -10dB, которая ослабляет сигнал в 3 раза с копейками.

И остались у нас на разборе еще пара крутилок с кнопками

Кнопочки под ними задействуют соответствующую крутилку при нажатии.

R/PRump/Pulse – Уклон/Импульс.

С помощью этой крутилки мы можем чуток поиграться с формой сигнала, задавая уклон. Вот некоторые осциллограммы синусоиды и пилы, которые я немного видоизменил с помощью этой крутилки:

Крайнее левое положение крутилки

Генератор функций UNIT

Крайнее правое положение крутилки

Генератор функций UNIT

Крутнул чуть-чуть:

Генератор функций UNIT

Крайнее левое положение крутилки

Генератор функций UNIT

Крайнее правое положение крутилки

Генератор функций UNIT

Крутанул чуток:

Генератор функций UNIT

У прямоугольного сигнала с помощью этой крутилки мы можем менять ширину импульсов, тем самым меняя скважность сигнала, а следовательно и коэффициент заполнения.

Генератор функций UNIT

Крайнее левое положение крутилки

Генератор функций UNIT

Крайнее правое.

Генератор функций UNIT

Крутилка DC LEVEL. Direct Current Level. В переводе с англ. уровень постоянного тока. С помощью этой крутилки мы можем добавлять в сигнал постоянную составляющую, то есть добавлять постоянное напряжение или как говорится, “поднять или опустить сигнал над уровнем моря”. В данном случае на уровнем земли. А как вы помните, земля у нас с потенциалом 0 В.

Если показать рисунком, то получается вот так:

В первом случае мы к синусоиде прибавляем положительное напряжение, а во втором случае – отрицательное.

Давайте смешаем синусоиду с постоянным напряжением, добавляя или убавляя его с помощью крутилки DC LEVEL:

Прибавил постоянное напряжение к синусоидальному сигналу:

Генератор функций UNIT

А здесь я смешал синусоиду с отрицательным постоянным напряжением:

Генератор функций UNIT

В этих случая главное не забыть поставить в настройках осциллографа “измерение постоянного тока”, иначе у вас сигнал не сдвинется.

При желании можно также тактировать МК, задав 5 В и добавив постоянного напряжения с помощью крутилки DC, хотя, как я уже писал, можно подцепить МК  к выходу “TTL OUT” генератора функций.

выход TTL генератор функций

Генератор функций в роли частотомера

Давайте проверим, как он считает частоту. Подаю на него частоту в 15 Килогерц с другого китайского генератора. Смотрим, что насчитал наш генератор функций (на показания справа не обращайте внимание):

Ровно 15 КГц.

Характеристика генератора функций

Мой генератор выдает максимум частоты в 2,49 МГц и размах напряжения в 22,2 В. В принципе, для меня этого вполне будет достаточно, как для начинающего электронщика. Вот к нему инструкция на русском. Также прилагаю скриншот его характеристик:

генератор функций характеристика

Заключение

Как я уже сказал, взял я его на Алике в день распродажи 11 ноября и он мне обошелся в 8700 деревянных, при цене типа в 9600, но по крайней мере дешевле не нашел. Глянуть на Алике этот прибор и сравнить цены вы можете по этой ссылке. 

Где можно применить этот прибор?  В основном везде, где надо подать тестовый сигнал и посмотреть, что получится на выходе. Это усилительная аудиотехника, различные фильтры, резонансные контура и тд.

А вот также видеоролик этого генератора от ЧипаДипа

www.ruselectronic.com

Отправить ответ

avatar
  Подписаться  
Уведомление о